
A.D-A124 712 AUTOMATED TOOLS FOR TEST AND ANALYSIS OF RADAR NARMING L/2
RECEIVER SOFTMARE(U) AIR FORCE INST OF TECH
MRIGHT-PATTERSON RFB OH SCHOOL OF ENGI. J R ROBERTSON

UNCLASSIFIED DEC 92 AFIT/GCS/EE/82D-28 F/G 17/9 ,N

mhhhhloE-o

mhhhhhhhhhhhhE

1**.0
**1.

: 1o I N 2 .

-. ~.2 LA~1'-

MIROOP RESLUIO TET C"

q'INLBR-IO TNDRS16-

A2MA

KUTONATED TOOLS -

FOR TEST AND ANALYLSIS OF
"~DAR WARNING RECEIVER SO)FTWARE

THES IS

AFIT/GCS/EE/82D-28 JOEL R. ROBERTSON
CIV USAP

7This document has been approved DTIC
for public release and sale; its
distribution

i! unlimited.

FEB 2 203
DEPARTMENT OF THE AIR FORCE A

AIR UNIVERSITY (ATC)
CO AIR FORCE INSTITUTE OF TECHNOLOGY

W right-Patterson Air Force Ss, Ohio

K9 89 0 2 o22 143

T1?MMAST FTMR
SECURITY CLASSFI71ATION OF rTmi ok, (wI%.i fna:a Entrered)

REPORT DOCUMENTATIN PAGE FDNTRCIS

I. REPORT tdLbIDER ACSINNO. 3 PFCImrP,'TS- CATA.OG NummER

* . AFIT/GCS/EE/82D-28 i~ I V'72-- - -- _ ____

4. TITLE (and Subtitle) $- TFE 3F ,EPOAT APERIOD COVERED

Automated Tools for Test and Analysis
of Radar Warning Receiver Software MS____THESIS _____

6.P4~mImG ORG. REPORT NUMBER

7. AUTHOR(&) 8.--S CONIFIACT OR GRANT NUMBER(S)

Joel Re Robertson, Civilian, USAF

9. ER R M N G RG NI ATI N AM AND ADDRESS 10 PPOCPAM SLEM ENT. PROJECT . TASK~

A V'S A WCRK UNIT NUMBERS

Air Force Institute of Technology (AFIT/EN
Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

WR/ALC-MMRRVA December 1982
*Robins AFB, Georgia 31098 13, NUMBEPO0PPAGES

156
*14. MONITORING AGENCY NAME II AODRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
158. DECL ASSI FI CATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

I7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES
Iss'*

Approved~~~~ ~So forarc pulcrees;IA 90 D I.d ProIesolonal Develq o

* 19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Computer Programming
Computer Programs
Computer Program Verification

4 Debugging (Computers)

20. ABSTRACT (Continue an reverse side If necesaery and Identify by block number)

See reverse

DDI FJAN73 1473 EDITION Of I -IIIV4 3.SLEFUCASFE

SECUITY CLASSIFICATION Of THIS PACE (Men Data Entered)

7. .. .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(hen Date Entered)

20. Abstract

The Data Extraction and Analysis System (DEAS) was
designed and implemented for the Electronic Warfare Avionics
Integrated Support facility at the Warner Robins Air
Logistics Center. The DEAS is designed to be used with
the ALR-46 Integrated Support System (ISS) to assist
testing and evaluation of operational flight software.
The system is written in DEC standard Pascal.

4

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(hen Date Entere)

AFIT/GCS/EE/82D-28 r7

INSPLIC TM1

AUTOMATED TOOLS
FOR TEST AND ANALYSIS OF

RADAR WARNING RECEIVER SOFTWARE

THES IS

AFIT/GCS/EE/82D-28 JOEL R. ROBERTSON
CIV USAF

'KFEB 2 2 1983

Approved for public release; distribution unlimited

* I II *I I _., I EI! . U ~ I iL - I - I - -

AFIT/GCS/EE/82D-28

-'. -2 AUTOMATED TOOLS

FOR TEST AND ANALYSIS OF

RADAR WARNING RECEIVER SOFTWARE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment for the Degree of

Master of Science in Computer Engineering

by

Joel R. Robertson, BSEE

CIV USAF

Graduate Electrical Engineering

December 1982

Approved for public release; distribution unlimited

PREFACE

The ALR-46 Data Extraction and Analysis System was

developed for the Electronic Warfare Avionics Support

Facility to assist in testing of the ALR-46 operational

flight program.

I would like to express my appreciation to my thesis

committee p and in particular Dr. Gary B. Lamont my thesis

advisor, for their assistance and guidance during this

thesis. Finally, I would like to extend my sincerest thanks

to my wife, Tami, f or her encouragement and assistance in

typing this thesis.

CONTENTS

;-:PR EFACE a o 9 ieei

LIST OF FIGURES . vii

LIST OF TABLES . Vii

ABSTRACT viii

CHAPTER 1 INTRODUCTION

BACKGROUND.*
ALR-46 Radar Warning Receiver o 2
Program Maintenance 3

PROBLEM 4
SCOPER.ee a o e 6STANDARDS. e....*e 000
APPROACH. .. * . o . . o e . e . e e " * . a 6

=- THESIS DEVELOPMENT. 7

CHAPTER 2 SYSTEM REQUIREMENTS

INTRODUCTION. 9
ENVIRONMENT. * . e e @ e e * * * 9 e . e e 9 . * 10

Introduction 10ALR-46 ISS . 11
Interface Controller 13
Edit And Assembly Station 14

USER REQUIREMENTS. . i 15
Interviews 15

HUMAN-FACTORS REQUIREMENTS. 17
Introduction 9 0 . . 17
Design Principles 9 0 *.....*.. . . . 17

AVAILABLE TOOLS. 19
Static Analysis 19
Dynamic Analysis 20

TOOLS SELECTION 23
SUMMARY. . . e . e 9 e e * * * . e v 24

CHAPTER 3 SOFTWARE REQUIREMENTS

INTRODUCTION. 26
SOFTWARE MONITORS M . .T R 26

iii/

SOFTWARE REQUIREMENTS... 28
Performance Analysis Mode 9 29

Coverage Analysis Mode 29
Error Analysis Mode • • 30
Trackfile Mode 30
RR Mode 30

SUMMARY. 30

CHAPTER 4 SOFTWARE DESIGN

INTRODUCTION. 32
DESIGN STRATEGYe5 32
DESIGN TECHNIQUES.*. 33

SADT Diagrams. 34
Structure Charts 35
Data Dictionary . . *. 35

SUMMARY.o o o o o a 9 e o 38

CHAPTER 5 IMPLEMENTATION AND TESTING

INTRODUCTION. 39
IMPLEMENTATION STRATEGY. 39
IMPLEMENTATION DETAILS.* . . 40
Data Structures 40
Main Executive.. a. . . . 41
Subroutine Execution Time Clulai . . 42
Coverage Analysis • • 43
Error Analysis 43 **

TESTING. * * * * * * * 0 43

White Box Testing 44
Black Box Testing 44
System Testi 0 46

SUMMARY. . • • • 46

CHAPTER 6 RESULTS AND RECOMMENDATIONS

RESULTS.. 48
RECOMMENDATIONS 49

BIBLIOGRAPHY • • . . . * . . 50

APPENDIX A INDEX OF AVAILABLE SOFTWARE TOOLS

STATIC ANALYSIS TOOLS. 53
DYNAMIC ANALYSIS TOOLS. 53

iv

'.'... . . ". , : . . . , : , : . : - --, , , ,

APPENDIX B DATA EXTRACTION FILE FORMATS

EVENT/LOCATION SPECIFICATION FILE. 56
EXTRACTED DATA FILE 57

* - APPENDIX C SADT DIAGRAMS

DATAANALYSIS 60
PERFORMANCE-ANALYSIS * . . . 61
COVERAGE-ANALYSIS 62
ERROR-ANALYSIS 63

APPENDIX D STRUCTURE CHARTS

DATA ANALYSIS 65
Help User * 66
Select Mode 67
Do Performance Analysis .5 .se. 68
Do Coverage Analysis 71
Do Error Analysis 74

APPENDIX E DATA DICTIONARY

SYMBOLS AND MEANINGS. 5 ... 78
DATA ELEMENTS 79
DATA FLOWJS o e e 9 w 86
FILES * . 89

APPENDIX F PASCAL SOURCE LISTING

PROGRAM DATAANALYSIS 92
Procedure get-..input 94
Procedure helpuser 95
Procedure getaddress . . . 97
Procedure octal 99
Procedure perfhelp 100
Procedure perf_build_dx 101
Procedure perf-collectdata 103
Procedure push-stack 104
Procedure popstack o . 105

4 Procedure perf-reducedata o * e . * @ . 106
Procedure do_.performance. 0. 109
Procedure coy_help . 110

* Procedure cov_builddx i
* Procedure cov_collectdata 112

Procedure covtreesearch 113
Procedure build_coy tree 115
Procedure readcovtree 117
Procedure coy-reduce_data 118
Procedure do_coverage 120

v

• .. ~- .. - . • . " " i ' " I '" ', "
"

.

Procedure error-help 121
Procedure error-builddx 122
Procedure errorcollect_data 123
Procedure err-tree_search 124
Procedure builderrtree . . . 0 0 0 0 0 & 0 0 126
Procedure read_err_tree , * * 0 * * . a 0 . 128
Procedure errorreduce_data ... 129
Procedure doerror . 0 * 0 0 * 0 0 0 * * . . . 131
Procedure do_trackfile . . . a * . 0 0 0 * 0 0 132
Procedure dorwr . . 0 * 0 0 * * * . . 9 . . . 133
Main Executive * 0 . . * * 134

APPENDIX G TEST DOCUMENTATION

TEST PLANS 137
TEST DATA AD RESULTS 140

Performance Analysis o 140
Coverage Analysis 143
Error Analysis 144

Vita e o e * o * 0 147

v

SVia. ,.......- •...7

... ..

LIST OF FIGURES

Figure Page

1. ALR-46 Radar Warning Receiver 3

2. ALR-46 ISS Network 10

4. Hot Mock-up Subsystem 12

5. Data Extraction Subsystem 14

6. DEAS Function Chart . . 6 .* * * .* 29

7. Box/Interface Arrow Definition 35

8. SADT Diagram 36

9. Structure Chart Symbols 37

10. Structure Chart 38

LIST OF TABLAS

Table Page

1. Valid Commands 41

2. Equivalence Classes 46

vii

ABSTRACT

The Data Extraction and Analysis System (DEAS) was

designed and implemented for the Electronic Warfare Avionics

Integrated Support facility at the Warner Robins Air

Logistics Center. The DEAS is designed to be used with the

ALR-46 Integrated Support System (ISS) to assist testing and

evaluation of operational flight software. The system is

written in DEC standard Pascal.

vi

I

iii

CHAPTER 1

INTRODUCT ION

1.1 BACKGROUND.

The primary function of an electronic warfare (EW)

system is to detect radiation, identify and evaluate

threats, and generate appropriate responses (Ref 13:3). One

type of electronic warfare system is the Radar Warning

Receiver (RWR). The response produced by a RWR is to inform

the pilot when his aircraft is being illuminated by a

hostile threat. The two types of RWR's are analog and

digital (Ref 8). Analog RWR's were developed first and gave

only signal direction and relative signal strength

information. The digital RWR's contain an embedded computer

and identify the threat by comparing measured signal

parameters to those stored in a data base. The digital RWR

would then display the type and position of the threat on a

cockpit CRT display. The program that the RWR executes is

called the Operational Flight Program (OFP) and the data

base is called the Emitter Identification Data (EID).

- -

1.1.1 ALR-46 Radar Warning RBcive - The Electronic

Warfare Avionics Integrated Support Facility (EWAISF) at

Robins AFB provides hardware and software support for the

Air Force Electronic Warfare systems. One of the largest

systems maintained by the EWAISF is the ALR-46. The ALR-46

is a 2 to 18 Ghz digital radar warning receiver (RWR). It

is capable of analyzing and identifying up to 16 emitters

concurrently. The ALR-46 is the most widely used RWR in the

Air Force inventory (Ref 23:193). The ALR-46, shown in

figure 1, consists of the following (Ref 16:6,13): four

amplifier/detectors located at 45, 135, 225, and 315

degrees, an omni-directional low band receiver, the signal

processor, up to two azimuth indicators, one "threat display

and control unit" for each azimuth indicator, and interfaces

to aircraft avionic systems.

Two hardware versions of the ALR-46 are currently

maintained by the EWAISF, the original version and an

updated version. The original version of the ALR-46 has a

five board CPU and draws the CRT display symbols with

software. The updated version has a single board CPU and

has a dedicated graphics processor for drawing the symbols

on the CRT. The different hardware configurations require

different versions of software. The Tactical Air Command

(TAC) and the Strategic Air Command (SAC) have different

mission requirements and therefore use different versions of

software for each hardware configuration. Therefore, each

of the two hardware configurations have two versions of the

-2-

AMPLIFIER/DETECTOR (4) INTERFACES
BANDS 1-3

* 450

BLANKING & JAMMER
INTERFACES

1350 -INTERCOM

ALR-46 DIAMOND
DES IGNATED

SIGNAL DATA HAND-OFF

PROCESSOR PROCESSOR DATA BUSS

OTHER AVIONIC
INTERFACES

S RECE IVER

AZ IMUTH
INDICATOR

THREAT DISPLAY
___________ &CONTROL UNIT

Figure 1. ALR-46 Radar Warning Receiver

operational flight software for a total of four software

versions.

1.1.2 Pr a Maintenance - Routine changes to the flight

software are made during a Block Change Cycle

(Ref 14: Sec 4, 7). A Block Change cycle is a scheduling

method to collect, develop, implement, and test computer

program changes in a fixed time frame (Ref 14: Sec I, 4).

-3-

. . . .

Program changes are collected to be processed concurrently

in each change cycle. Program changes are prioritized and

placed in a queue up to the block cycle cutoff date.

Changes received after the cutoff date are held for the next

change cycle. The software for each of the four versions is

updated once each year. The primary reasons for updating

the software are: to update the EID to include new

intelligence data or to reflect changing mission

requirements, to add new capabilities to the OFP, and to

corect errors found by either the user or by maintenance

personnel.

The ALR-46 Integration Support System (ISS), provides a

facility for testing and evaluating the performance of the

QALR-46. Data can be extracted from the signal processor

without interfering with the program execution. The ISS

allows operation of the signal processor with up to 32K of

external RAM or with it's internal RAM/PROM. The use of

external RAM allows program modification or instrumentation

without "burning" new PROMS (Ref 2: Sec 3,1).

1.2 PROBLEM.

The software delivered with the ISS enables the user to

load operational flight software into the ALR-46 signal

*processor RAM, to extract data from the 32K external RAM

memory without interfering with OPP execution, and to

validate proper operation of the data extraction subsystem

-4-

(Ref 1: Sec 2,1). Software has been developed (Ref 22) in

response to user requirements to duplicate the ALR-46 CRT on

a Tektronix 4027 color graphics terminal and to display

extracted data on a video terminal. However, since no other

software tools have been developed for the ALR-46 ISS,

flight software is still tested and debugged with the

traditional co-resident debug program. Testing reqirements

need to be established, and the necessary software tools

need to be developed to exploit the capabilities of the new

systems as fully as possible.

1.3 SCPE

This study has three goals. The first goal is to

establish the requirements for automated tools for test and

analysis of ALR-46 flight software. The second goal is to

identify software tools already available. The final goal

is to develop a system of test tools for use with the ALR-46

ISS. An overall system design of the tools will be done

before coding will begin. The tools will then be coded and

tested. Those tools which are not currently available but

outside the scope of this study will be recommended for

future investigation. The completed software will be

d delivered to the sponsor (EWAISP).

Top-down procedures of software development will be

adhered to. This means that program development will

proceed from program requirements to functional

specification, to design, to coding, and to validation and

verification.

The top-down approach leads to structured programs in

which the main program can be decomposed into smaller

subprograms. The design of subprogram h"stubs" allow testing

to begin as code is developed (Ref 20:29,31).

Both FORTRAN and Pascal are available at the sponsor's

facility (EWAISF). Even though FORTRAN is the most commonly

used high level language at the EWAISFr Pascal was chosen as

the language for program development. Pascal is a block

orientated language and supports structured programming

constructs (Ref 7).* The use of Pascal will enable the

development of a more easily maintained system.

1.5 APPRQAJ.

The first objective of this study is to determine the

user's requirements for software testing. This is to be

done primarily through a series of interviews with EWAISF

personnel.

-6-

The second objective is to determine the software tools

requirements. A detailed literature search will be done to

determine which software tools are already available. A

feasibility study will be done to determine which tools are

within the scope of this effort. The third and major effort

is to design the system of test tools. The final objective

will be to code and test the software tools. An integrated

test plan will be developed. Final testing and installation

will be done on the ISS at Robins AFB at the prerogative of

the EWAISF.

1.6 THESIS DEVELOPMENT•

This thesis will be developed in five sections.

Chapter 2 covers the overall testing requirements for

electronic warfare embedded computer systems in general and

the ALR-46 RWR in particular. Chapter 3 describes the

requirements for the automated test tools which will be

developed during this study. Chapter 4 discusses the design

of the automated test tools. Chapter 5 describes the

implementation and the testing of the tools. The final

chapter covers results and recommendations for further

study. Appendix A contains an index of available software

testing tools. Appendix B contains the formats required by

the software tools. Appendix C contains the Structured

Analysis and Desiqn Technique (SADT) diagrams. Appendix D

contains the structure charts. Appendix E contains the data

dictionary listed in alphabetical order. Appendix F

7

contains the source listing of the software tools. Finally,

Appendix G contains the test documentation for the software

* tools.

4

-8-

CHAPTER 2

SYSTEM REQUIREMENT

2.1 INTRODUCTION.

A Pftware requirement is a need established for a

piece of software by an organization in order to achieve

certain goals. The requirement-generation activity

culminates in the approvals, negotiations, and commitments

of resources necessary to initiate, sustain, and complete

the software development. The software requirements should

identify the objectives of the program, its environment, the

configuration required for its operation, and the resources

required for its support. The software requirements should

be complete enough to allow development to proceed without

major changes in the requirements (Ref 21:2-3).

d This chapter will discuss the overall requirements for

ARL-46 flight software testing. The environment in which

software testing is to be done will be presented, and user

requirements for software test tools will be discussed.

Available software tools which meet these requirements will

-9-

also be described. Finally, the method used in determining

which software tools to develop will be discussed.

S2.2 ENVIRONMENT.

2.2.1 Introduction - The environment in which the software

tools must operate is composed of three ALR-46 Integration

Support Systems (ISS), an interface controller (VAX 11/780),

and an edit and assembly station (ECLIPSE S/230). The

interface controller is connected to the three ISSs and to

the edit and assembly station by a star configuration

computer network, as shown in figure 2. The network

utilizes the Digital Equipment Corporation DECNET protocol.

ALR-46
ISS

'"ALR-46 INTERFACE ALR-46
S" ISS CONTROLLER ISS

-. EDIT D
i ASEML

Figure 2. ALR-46 ISS network.

-10-

2.2.2 A ISS - Each ALR-46 ISS, shown in figure 3,

consists of three subsystems, the hot mock-up subsystem, the

data extraction subsystem, and test equipment

(Ref 2: Sec 3, 1).

2.2.2.1 Hot cI-u S - The hot mock-up subsystem,

shown in figure 4, supplies the required power for the

ALR-46. Test points, not available during airborne

operation, are provided for signal monitoring. The hot

mock-up subsystem provides a means to control the operation

of the signal processor with its resident OFP.

The hot mock-up subsystem contains the AN/ALR-46(V)

radar warning receiver (RWR), the adaptor subsystem, the

0J system monitor panel, and the 400 hz power source

(Ref 2: Sec 3, 1-4).

I TEST
EQUIPMENT

SHOT MOCK-UP DATA EXTRACTION

SUBSYSTEM SUBSYSTEM

Figure 3. ALR-46 ISS.

- 11 -

°o.M

~SYSTEM

MONITORPANEL

IALR-46 ADAPTOR

HARDWARE SUBSYSTEM

POWER SUPPLY

Figure 4. Hot Mock-up Subsystem

The operation of the signal processor is controlled by

the adaptor subsystem. The adaptor subsystem contains the

DX adaptor board, which provides the means to extract data

from the ALR-46 signal processor. The adaptor subsystem

also provides the basic I/O capability for the signal

processor (Ref 2: Sec 3 5,10). The adaptor subsystems are

slightly different for the two hardware configurations of

the ALR-46 (Ref 3, 4).

The system monitor panel provides test points, used

primarily to aid in detection and isolation of RWR hardware

problems. The system monitor panel also contains various

status indicators and controls.

,1

6 12

2.2.2.2 Data Extraction Suytem- The data extraction

subsystem, shown in figure 5, provides the means for

specifying data to be extracted and for collecting the

extracted data. The data exchanges between the data

extraction subsystem and the adaptor subsystem occur via a

DRll-B DMA interface. The data extraction subsystem

consists of a PDP-11/34 computer, a PDT-11/130 CRT, a LA120

printer, a TEl6 magnetic tape unit, and two RL01 disk

drives. The PDP-11/34 runs under the RSX-1lM operating

system (Ref 2: Sec 3, 11-12).

2.2.2.3 Test Eguipment - The ISS contains test equipment

for monitoring signals at the test points provided by the

system monitor panel. The test equipment included are: an

oscillocope, a digital multimeter, and a universal counter

(Ref 2: Sec 3, 12).

2.2.3 Interfac Cnller - The interface controller

consists of a Digital Equipment Corporation VAX 11/780

computer. The peripherals associated with the VAX 11/780

are, two REP06 disc drives, a TEU77 tape transport, a LA120

console terminal, and four VT100 CRTs.

The interface controller performs two primary

functions. One function is to control the DECNET data

exchanges and the other is to do off line analysis and

storage of extracted data. The VAX 11/780 runs under the

VMS operating system.

-13-

PDT-1/1301
RLO1]I ; CRT DISK

TE6PDP-11/34RL0
TAPE CONTROLLER

LA-120

PRINTER

Figure 5. Data Extraction Subsystem

2.2.4 Edit And Assemly Sttio - The edit and assembly

Station consists of a Data General Eclipse S/230

minicomputer. The peripherals associated with the Eclipse

are two 20 M byte disk drives, a 190 M byte disk drive, two

magnetic tape transports, a line printer, a printing

terminal, and three CRTs. The Eclipse runs under the Data

General Advanced Operating System (AOS). AOS is a

multi-user multi-tasking operating system.

The primary function of the Eclipse is to assemble the

ALR-46 flight software. The ALR-46 signal processor

executes the Data General Nova instruction set. Since the
4

Nova instruction set is a subset of the Eclipse instruction

set, the ALR-46 flight software can be assembled by the AOS

Macro Assembler. The assembled flight software is

transferred to the interface controller which in turn routes

it to the appropriate ISS.

S- 14-

F2.3 USER REQUIREMENTS.

2.3.1 Interviews - A series of interviews have been held

with EWAISF personnel in order to establish requirements for

automated test and support tools. The Engineering and

Reliability Branch Chief, the EW Receivers System Section

Chief, the ALR-46 Unit Chief, five engineers, and one

technician participated in the interviews.

Eight requirements for automated test and support tools

were identified. The tools would be used for support of

software development and testing. The automated tools

requirements identified were:

1. Automated control of the threat generators. The

software to generate threat signals is scheduleo to be

delivered with the threat generator system. The

capability to compare the response of the ALR-46 to the

threats generated has not been developed at present.

2. The capability to perform statistical analysis of the

decision paths executed, such as the percentage of times

one path is executed instead of another, and to

determine the testing coverage.

3. The capability to determine performance characteristics,

such as the execution time of programs and modules.

-15-

4. A computer simulation of the ALR-46 system. This would

be used to evaluate hardware as well as software

modifications.

5. The capability to generate input buffers. This would

allow testing of the software without having to generate

actual RF signals and for repeatability of tests.

6. Automated generation of test data.

7. The capability to test programs and modules

independently.

8. The capability to assemble flight programs on the VAX

11/780. The specified function of the VAX 11/780 is

of fline support of the ISS. This includes mass storage,

message routing, data analysis, and the production of

flight software. The Eclipse S/230 is being retained

for the sole function of assembly of flight software.

Two additional requirements not identified in the user

4interviews are: the ability to identify variable out of

range conditions, and "hooks" for inclusion of previously

developed software (Ref 22).

4 -16-

2.4 HUMAN-FACTORS REURMNS

2.4.1 Introduction - Human factors is a discipline which

attempts to take into consideration human strengths and

limitations in the design of computer hardware and software

(Ref 19:108-132). If human factors are not considered, a

computer system may be difficult for people to operate.

Human beings vary in intelligence, education, and

motivation. The general rule in considering human factors

in the design of a system is to consider the needs of th~e

intended users.

The relative importance of human factors varies with

the program environment and application. Four aspects of a

computer program to consider are: the number of users, the

diversity of the users backgrounds, program complexity, and

the consequences of user error.

2.4.2 Desijgn Principles. - Six human-factors design

principles which will be discussed are: provide feedback,

be consistent, minimize human memory demands, keep program

simple, match the program to the operator's skill level, and

sustain operator orientation.

When a user makes an action he needs to know when that

*action has taken effect. If an entry is made and no

4 feedback is provided, the action may be repeated or another

action may be tried, which may have unintended results.

-17-

* I I *_ ~ . . S PU

Peedback should be immediate and appear in an expected

location.

The program should be consistent. Consistency allows

the user to learn the operation of one part of the program

and apply that knowledge to other parts of the program.

The program should minimize human memory demands.

Since computers have better memories than people, and

remember things exactly, the computers memory should be

relied on as much as possible. Selecting an option from a

displayed menu is generally preferable to entering memorized

mnemonics.

The program should be kept simple. A program which is

unnecessarily complex is both difficult to learn and use.

The program interface should be matched to the

operators skill level. The skill level of the intended

users should be determined before the program is designed.

The possibility of a user becoming disoriented should

be minimized. The user should be provided with messages

telling the user where the user is and how to return to

where the user came from.

- 18 -

* . --.. I . **. -

2.5 AVILABL TOOLS.

The software tools available for software testing fall

into two categories, static and dynamic.

2.5.1 Static A - Static analysis of software uses

methods of validation which do not require the program to

actually be executed (Ref 11:83). Static analysis may use

some method of simulated execution. There are three types

of static analysis of programs. The first type provides

general information about a program, and are not designed to

find a particular kind of logical error. An example of this

type would be cross reference generators. The second type

uses techniques which are designed to find particular types

of errors or abnormal program constructs. This class of

techniques is called Static Error Analysis techniques. The

third type of static analysis is Symbolic Evaluation.

Several types of automated tools useful in static analysis

are described.

2.5.1.1 Source C - A source comparator is a

computer program used to compare two versions of the same

computer program source code. The program will identify
changes made to the source program or establish identical

configurations (Ref 18:55).

-19-

°-.

2.5.1.2 Cross-Reference Generato- A cross-reference

generator is a computer program which provides

cross-reference information on system components. A program

*can be cross-referenced with other programs, macros or

parameter names. This program is useful in determining the

impact of a change made in one area to other sections of the

program by showing the scope of variables (Ref 18:55).

2.5.1.3 Flow-Chart Generator - A flow-chart generator is a

computer program used to show the logical control-flow

structure of a computer program. The logic flow is

determined from the program instructions and not from the

comments. The flow-charts generated by the program can be

compared to the flow-charts supplied with the code to

identify discrepancies (Ref 18:56).

2.5.1.4 Sadr hnyze - A standards analyzer is a

computer program used to determine if predefined procedures,

rules, and conventions have been followed. The standards

analyzer can check for violations in conventions such as

program size, comments, and structure (Ref 18:58).

* 2.5.2 Dynamic AnziEi - Dynamic analysis primarily

involves program testing (REF 10:185). There are several

other techniques such as dynamic assertions and recovery

*I control blocks.

e - 20-

Program testing involves executing the program with a

set of sample data as input. The test output may be program

output variables, intermediate values of selected variables,

* or timing information in "real time" systems.

2.5.2.1 _.It PAUGnato r - A test data generator is a

program which generates test data or test cases to exercise

the system under test. Test data generators are useful in

systems where "live" data is not available (Ref 18:56).

2.5.2.2 P.J aAnaly er - A data base analyzer is a

2computer program which provides information on the usage of

data. It indicates whether the program inputs, uses,

modifies, or outputs the data element (Ref 18:55).

2.5.2.3 Dbgge - A debugger is a computer program which

helps to identify and isolate program errors. It usually

includes commands such as DUMP, TRACE, MODIFY, CONTENTS,

BREAKPOINT, etc. (Ref 18:56, 9:426-428).

2.5.2.4 gimulator - A simulator is a computer program which

provides the system under test with inputs or responses

which "resembles" those which would have been provided by

*7 the device being simulated (Ref 12:3-4). A description of

- several of the various types of simulators follows:

1"21 - 21 -

2.5.2.4.1 Enviroment Si- An environment simulator

is a computer program which is used to test operational

programs on a host computer. The operational programs run

under simulated conditions as if they were operating within

the real-time constraints of a machine to which all the

components of the ultimate system are attached (Ref 18:56).

2.5.2.4.2 Peripheral imulator - A peripheral simulator is

a computer program used to present functional and signal

interfaces representative of a peripheral device to the

target system.

2.5.2.4.3 System S la1oL - A system simulator is a

computerized model of the system (hardware, software,

interfaces) used to predict system performance over time. A

system simulator allows full control of inputs, and computer

characteristics. It allows processing of intermediate

outputs without destroying simulated time, and allows full

test repeatability and diagnostics (Ref 18:58).

2.5.2.4.4 Instruction simulator - An instruction simulator

is a computer program used to simulate the execution

characteristics of a target computer. The instruction

simulator provides bit for bit fidelity with the results

that would have been produced by the target computer

4 (Ref 18:56).

-22-

- -- 22--

2.5.2.5 interactive gt Bed - An interactive test bed

performs three functions. First, it preprocesses the module

under test so that instrumentation to measure testing

coverage can be inserted in the code. Second, it links the

instrumented module into a test harness which can control

these functions: l)Set-up of input data, 2)Intercept of

stub calls, 3)Supply of stub return data, 4)Capture of

output data, and 5)Reporting of coverage. Finally, it

documents the test actions so testing can be repeated

(Ref 18:58).

2.6 TOOLS SELECTION.

Since the contractor is scheduled to supply software to

drive the threat simulators, the development of this

software will not be considered during this study. The

capability for closed loop testing by generating a threat

and then analyzing the response of the system cannot be

addressed until the specific implementation details of the

threat generators are established.

A computer simulation of the ALR-46 system has been

developed and is identified in Appendix A. This simulator

*I should be evaluated by the EWAISF before any other work is

done in this area.

gI - 23-

The production of a software package to assemble flight

software on the VAX 11/780 is a large programming task but

would not have sufficient theoretical content to warrant

thesis level attention.

The tools selected for development meet the following

requirements: to determine the testing coverage, to

determine the execution time of modules, and to identify

variable out of range conditions.

It has been determined that the remainder of the user

requirements could not be accomplished in the time available

for this study.

2.7 UMMY.

Many software testing tools have been developed,

however most are software or application dependent. The

majority of these tools were developed for use with a

specific high level language, such as FORTRAN. Since the

ALR-46 flight software written is Nova assembly language,

the number of tools directly applicable is greatly reduced.

The tools found which are directly applicable are identified

in Appendix A. Further, the unique design of the ALR-46 ISS

data extraction subsystem requires custom software to be

written for it.

- 24 -

This chapter has discussed the requirements for

software test tools and the types of automated tools

available to meet those requirements. Finally, the process

used in determining which software tools to develop during

this study was described.

I2

.4

4 -25
..........

CHAPTER 3

SOFTWARE REOUIREMENTS

3.1 INTRODUCTION.

Chapter 2 discussed the ALR-46 flight software testing

requirements, what software tools are available to meet the

requirements, and which tools were selected for development

in this study. This chapter will discuss the requirements

for the software tools.

3.2 SOFTWARE MONITORS.

Monitors for software testing can be divided into four

categories (Ref 17:405-406). The first category is composed

of monitors used for enforcing or ascertaining the traversal

of paths. The second category is composed of monitors used

for measuring path traversal frequencies. The third type is

used for detecting erroneous conditions, such as variable

out of range. The fourth type is the perf.. iance monitor

which is used for observing performance behaviors, such as

excessive delay.

*l - 26-

There are two approaches for ascertaining the traversal

of test paths. The first method inserts code segments,

called flow controlling monitors, in the test paths. A flow

controlling monitor is said to be "closed" when it is set to

transfer control to the test supervisor, and open",

otherwise. The use of flow controlling monitors requires

modification of the software under test. The normal

operation of the data extraction subsystem only allows

reading of data and not insertion. Therefore,

flow-controlling monitors will not be considered in this

study. The second method detects the traversal of paths by

analyzing the data recorded during the test run by a set of

monitors called traversal markers.

0The following software monitors were selected for use

in the Data Extraction and Analysis system (DEAS) because

they could be implemented on the ISS data extraction

subsystem. The ISS data extraction subsystem allows

extraction of data without insertion of probes into the code

under test. The monitors to be used will determine what

data will be extracted by the ISS data extraction subsystem.

Performance monitors will be used to determine the execution

time of modules. Traversal markers will be used to

determine the path traversal frequencies. Error detecting

monitors will be used to detect variable out of range

errors.

-2

-E -27 -

3.3 SOTAR REQUIREMENTS.

The DEAS operates in one of five modes. The first

mode, called the "performance analysis mode", measures the

execution time of each subroutine call. The second mode,

called the "coverage analysis mode", determines the

frequency of path coverage of marked paths during a

particular test. The third mode, called the "error analysis

mode", detects variable out of range errors. The fourth

mode, called the "trackfile analysis mode", and the fifth

mode, called the "RWR mode", are from a previous study

(Ref 22). The organization of the DEAS is shown in figure

6.

The Data Extraction and Analysis System (DEAS) software

is composed of three tasks. The function of the first task

is to specify the data to be extracted and when it is to be

extracted. The second task controls the extraction of the

data and saves the raw data in a disk fi3p. This software

was delivered by the contractor who developed the ISS (Ref

1). The third task analyzes and presents the data in

tabular format. This will provide the test engineer with

test results in a form which can be more easily decyphered

than large amounts of raw data.

- 28 -

P . ', - - - . . -l i- . U *m I I I tC. .

EXECUTIVE

ANALYS IS ANALYS IS
"MODE MODE

COEAEERROR RWR
ANLSSANALYS IS ANALYS IS

MODE MODE MODE

Figure 6. DEAS Function Chart

3.3.1 Performance. Analysis K1de, - The performance analysis

mode marks the time when a subroutine is entered and when

the subroutine is exited. The difference in these times is

the time spent in execution. The entry and the exit point

of each subroutine is entered. The output is a table of

execution times for the subroutines.

3.3.2 govergj Analysis Mode - The coverage analysis mode

counts the number of times each of the selected paths are

executed. The addresses of instruction to be used for path

markers are entered. The output is a table of the paths and

number of times executed.

- 29 -

3.3.3 Error Analysis - The error analysis mode checks

for "variable out of range" errors. The addresses of

variables to be monitored are entered. The output is a

table of the variables and their minimum and maximum values.

3.3.4 Trackfile M - The trackfile analysis mode displays

the contents of the emitter track file. Provisions will be

made to include the code for this function which was

developed by another study (Ref 22).

3.3.5 RWR Mode - The RWR mode displays a copy of the ALR-46

CRT on a color graphics terminal. Provisions will be made

to include the code for this function which was developed by

another study (Ref 22).

3.4 SUMARY.

This chapter has described the software requirements

for the Data Extraction and Analysis system. The

requirements were derived from the user, environmental, and

other requirements described in chapter 2. Briefly the

software requirements are as follows:

1. Determine module performance characteristics

2. Determine path traversial frequency

- 30 -

3. Detect variable out of range conditions

4. Provide for previously developed software

The next chapter will describe the system design.

131

r..

CHAPTER 4

SOFTNARE DESIGN

4.1 INTRODUCTION.

The previous two chapters described the software

requirements. This chapter will discuss the design

methodology and describe the detailed system design for the

Data Extraction and Analysis System (DEAS). The design

strategy will be described followed by the techniques used

in the design of the DEAS.

4.2 DESIGN SAT .

There are primarily two design strategies for

developing computer software. The first is top-down design.

In this method the major functions of a system are

-d identified and expressed in terms of lower level functions

(Ref 24:322). The process of functional decomposition is

repeated until all the subfunctions can be easily

implemented. A potential problem in strict top-down design

is that there may be no way to ensure that operations at one

-32-

level in the hierachy are supportable by some resource to be

provided at subordinate levels (Ref 20:21). The second

design strategy is bottom-up design. In this method, design

is started at the bottom of the hierachy before the design

at the top has been completely thought out (Ref 20:5). The

"bottom-up" approach can lead to difficulty in integrating

system components.

The top-down approach was chosen for the design of the

Data Extraction and Analysis System. The danger of having

system integration problems with the bottom-up approach out

weighs any advantages it might have. The top-down hierachic

decomposition leads directly to structured programs.

4.3 DESIGN EHIUZ

Several techniques were considered for the design of

the DEAS. The techniques considered were: Structure Charts

(Ref 24:25), Data Dictionaries (Ref 24), Data Flow Diagrams

(Ref 24), Structured Analysis and Design Techniques (SADT)

(Ref 6), and Hierarchical Input-Process-Output (HIPO) (Ref

24). A combination of SADT, Structure Charts, and a Data

Dictionary were selected for the system design. SADT shows

more detail than Data Flow Diagrams. SADT allows the

inclusion of control flow into the diagrams, Data Flow

Diagrams do not. Structure Charts show the relationship

between the modules more clearly than HIPO. A Data

Dictionary is desirable for any design technique.

-i - 33-

• Um a-

4.3.1 SD g s. - To apply SADT to a problem, a model

is built which expresses a "complete" understanding of the

nature of the problem. SADT breaks a complex subject into

its component parts. SADT begins with the most general

description of the system, represented by a single box, and

breaks that box into a number of more detailed boxes. Each

of these boxes is further broken down into more detailed

boxes.

The number of detailed boxes, which any parent box is

broken into, is limited to a maximum of six and a minimum of

three. The upper limit prevents too much detail from being

introduced at any one level. The lower limit ensures enough

detail to make the decomposition worthwhile.

Each module in a SADT model is represented by a box.

The relationship between modules is shown by interconnecting

arrows. This box structure is shown in figure 7. When a

module is broken down into submodules, the interfaces

between them are shown as arrows.

The arrows on the left show input data, which are

transformed into output data, shown by the arrows on the

right. Controls, represented by the arrows on the top,

govern the way the transformation is done. Mechanisms,

represented by the arrows on the bottom, indicate the

process or device which performs the activity

(Ref 6: Sec 4, 5,22).

- 34 -

CONTROL

-'--INPUT OUTPUT

MECHANISM

Figure 7. Box/Interface Arrow Definition.

-* A representative SADT diagram is shown in figure 8.

The SADT diagrams developed for the DEAS are contained in

Appendix C.

4.3.2 Structure Chart Structure charts were used to

develop the detailed system design. Their use along with

top-down design causes the major functions to be developed

first (Ref 24:141-147). Figure 9 shows the symbols used in

the structure charts. A representative structure chart is

shown in figure 10. The structure charts developed for the

DEAS are contained in Appendix D.

4.3.3 DA1 Dictionary- - A data dictionary defines all the

terms used in system development. A data dictionary entry

should contain a concise description of the term, all

* -. associated aliases, and the composition of the entry

(Ref 24:150-163). The Data Dictionary for the DEAS is

contained in Appendix E.

-35 -

HELPLEVEL

J ' ENTRY+EXIT-ADDRESSES

USER_ BUILD',

PERFORMANCE DXFILE
INPUT DX_FILE

COLLECT

-_

PERFORORMAANCE

REDUCE USERS
PERFORMANCE

DATA DISPLAY

FIGURE 8. SADT Diagram.

, - 36-

A
Module A calls Module
B passing data P,
Module B returns data

p?~D D and control Flag.

I FLAG

B

03 A
Module A calls Module
B on the basis of a
decision made in A.
Module A calls Module
C on the basis of a
loop in A.

B C

Figure 9. Structure Chart Symbols.

3

"o .

DO
DATA

ANALYSIS

command mode

GET HELP SELECT
COMMAND USER MODE

Figure 10. Structure chart.

~4.4 SUMMRY.

This chapter described the design strategy and design

techniques used in developing the DEAS. The use of SADT

diagrams, structure charts, and the data dictionary were

described. The SADT diagrams, structure charts, and data

dictionary used in the design of the DEAS are contained in

Appendices C, D, and E respectively. The next chapter

discusses the implementation and testing of the DEAS.

3

i
- 38 -

CHAPTER 5

IMPLEMENTATION AnTSTN

5.1 INTROUTIO.

The implementation of the Data Extraction and Analysis

System was done in VAX/ll Pascal (Ref 7). The reasons

Pascal was chosen were discussed in Chapter 1. Appendix F

contains the source listing for the DEAS. The

implementation was accomplished in accordance with the

design set forth in Chapter 4. The data structures used

will be described followed by a description of each of the

functional components of the system. Finally, the testing

of the system will be discussed.

5.2 IMPLEMENTATION STAEY

As in design, two strategies were considered. The

first is "top-down" implementation. With this strategy the

higher level modules are coded first with the next lower

level modules replaced with "dummy stubs" for testing.

Modules are coded working down until the entire design has

-39-

been coded. The second strategy is "bottom-up"

implementation. With this strategy modules are coded

starting with the lowest level. For testing, the remainder

of the system is replaced with a "test harness".

The top-down approach was selected because modules

could be tested as they are coded without requiring a test

harness for each module. The top-down approach minimizes

interfacing problems by defining the interfaces in the

higher level modules.

5.*3 IMLEMENATION DETAMS.

5.3.1 Datan Structres - Consideration was given to three

types of data structures for temporary storage of

information: the array, the linked list, and the internal

file. The array is the simplest data structure. The size

of an array is fixed regardless of the amount of information

stored in it. The size of an array must be set to the

maximum amount of data to be stored. The handling of a

linked list is more complex than an array, but the storage

is allocated dynamically. The internal file is more complex

to handle than a linked list but can store large quantities

4 of data. The linked list was chosen for temporary data

storage because storage space can be allocated dynamically

-' and the expected amount of storage required did not justify

the extra complexity of internal files.

-40-

5.3.2 Rain Exectiv- The main executive accepts commands

from the terminal. The complete list of valid commands is

shown in Table 1. A menu is printed if "help" was entered,

if a valid command was entered one of the five modes of

operation is started.

The user cannot cause the program to abnormally

terminate by typing invalid data. User input is accepted in

an array of characters (string array). Command inputs are

compared against valid commands until a match is found or

the entire list has been searched. Data inputs are checked

for invalid characters then, if necessary, converted into

the appropriate data type. Upper or lower case characters

are acceptable as input since lower case characters are

converted internally to upper case.

Table 1.

Valid Commands.

HELP - select from menu

PERFORMANCE - performance analysis

COVERAGE - coverage analysis

ERROR - error condition detection

TRACK - trackfile analysis

RWR - RWR color graphics display

QUIT - exit program

-41-

5.3.3 Sbroutine ExetaiQIf Tj.=f Calcu11ation1 When this

mode is executed the user is instructed to enter a name,

used to identify the subroutine, arnd its entry and exit

addresses. This mode builds an "event" type data extraction

file, as described in Appendix B. When the data for all the

subroutines have been entered the DEAS will begin to extract

the specified data.

After data collection is terminated the DEAS will

calculate the execution time of each subroutine call. Two

stacks are implemented for each subroutine. One stack

stores the entry time for each subroutine call and the other

stack stores the calculated execution time for each call.

Each time an event record is read, the event address is

02 compared with the entry address and the exit address for

each subroutine. If a match is found with an entry address,

the entry time is pushed on the "entry time" stack. If a

match is found with the exit address, the entry time is

popped off the "entry time" stack and subtracted from the

exit time to obtain the execution time. The execution time

is then pushed on the "execution time" stack. When all data

in the "raw data file" has been analyzed, the list of

subroutines will be searched and the execution time of each

call will be popped from the "execution time" stack and

displayed on the console.

-42 -

5.3.4 Coverage Anal1ys.is When this mode is executed the

user is instructed to enter an address to serve as a path

marker for each path to be monitored. The coverage analysis

mode builds a data extraction file to collect "event" data.

The format for this file is found in Appendix B. The

extracted data is reduced by inserting it into a binary

tree. A count is maintained of the number of traversals of

each path. An "in-order" traversal of the tree is made and

the paths traversed are printed out along with the number of

traversals of each path.

* 5.3.5 Error Anal.yis - When this mode is entered the user

is instructed to enter the address of each variable to be

monitored. The error analysis mode builds a data extraction

file to collect "location" data. The format for this file

is found in Appendix B. The extracted data is reduced by

inserting it into a binary tree, ordered by address value.

The minimum and the maximum value attained by the variable

is inserted into the binary tree. An "in-order" traversal

is made of this tree also. The addresses of extracted

* variables, with their minimum and maximum values, are

printed out in ascending order.

Two levels of testing were done, white box and black

box. "White box testing" is done using knowledge of the

internal structure of the code. "Black box testing" uses

-43-

the functional requirements and the system specification to

evaluate the performance of a system.

5.4.1 Wht Box Testing - White box testing started when

the first module was coded. "Dummy stubs" replaced the

modules which had not yet been coded. The primary method of

white box testing was path analysis. This testing technique

attempts to execute each decision to decision path.

5.4.2 Black~ = esin - After the entire DEAS system was

coded black box testing was done. Black box testing was

done using equivalence class testing and boundary value

analysis.

5.4.2.1 Egiaec Partitioning - Equivalence classes are

identified by taking each input condition and dividing it

into several groups (Ref 15:44-50) . There are two types of

equivalence classes. The first type is "valid equivalence

classes" which represents valid inputs to the program. The

second type is "invalid equivalence classes" which represent

all other possible inputs. A set of guidelines for

identifying equivalence classes is:

1. If an input condition specifies a range of values,

choose one valid equivalence class and two invalid

equivalence classes.

-44 -

2. If an input condition specifies the number of values,

choose one valid equivalence class and two invalid

equivalence classes.

3. If an input condition specifies a set of input values

and if each input value is handled differently by the

program, identify a valid equivalence class for each

input condition and one invalid equivalence class.

4. If an input condition specifies a "must be" condition,

identify one valid equivalence class and one invalid

equivalence class.

*5. If it is suspected that all elements in an equivalence

class are not handled identically by the program, split

the equivalence class into several smaller equivalence

classes.

Several examples of equivalence partitioning are shown in

Table 2.

5.4.2.2 Boundary-value Analysis Boundary conditions are

conditions which are directly or, above, or below the edges

of input and output equivalence classes (Ref 15:50-55).

*Boundary-value analysis differs from equivalence

partitioning in two respects. First,, boundary-value

analysis requires that elements selected from an equivalence

* class be at the edge of the class rather than any element in

the class. Second, output and input conditions are

4-45-

Table 2.
Equivalence Classes.

VALID INVALID
INPUT CONDITION EQUIVALENCE EQUIVALENCE

CLASSES CLASSES

COMMAND PERFORMANCE ANY OTHER
COVERAGE WORD
ERROR
TRACK
RWR
QUIT
HELP

OCTAL ADDRESS 0..32767 > 32767
< 0

NON OCTAL
DIGIT

MENU INPUT l..6 > 6
<1

considered, rather than only the input conditions.

5.4.3 System Testing - The specific tests used in

validating proper system performance are contained in

Appendix G. The test cases were chosen by applying

equivalence class analysis and boundry value analysis to the

system requirements. The expected response was obtained in

all test cases.

5.5 SnMMARY.

This chapter described the implementation and testing

of the Data Extraction and Analysis System. The design

described in Chapter 4 was followed in the implementation of

the DEAS. The language used in the implementation of the

-46-

i. I

DEAS was Pascal. The main data structures and the major

program sections were described. The DEAS was fully tested

according to the test plans in Appendix G. No known errors

exist in the program.

- 47 -

CHAPTER 6

RESULTS DROMMENDATIONS

6.1 RESULTS.

This study investigated the requirements for automated

tools for test and analysis of embedded computer software.

The user requirements along with external requirements were

considered in establishing the requirements for the Data

Extraction and Analysis System.

Once the requirements for the DEAS were established

system design began. A system model was produced using SADT

and the detailed system design was done using structure

charts combined with a data dictionary.

The DEAS was implemented using Pascal on the VAX 11/780

computer. The highly modular, structured design minimized

interfacing difficulties during implementation.

-48-

Both black box and white box testing was done. White

box testing was done as the modules were developed. Path

analysis was the primary technique used during white box

testing. Black box testing was done after the entire system

* "was developed. The techniques used for black box testing

were equivalence partitioning and boundary value analysis.

Installation and integration of the DEAS with the ISS

was not possible because of time constraints. No problems

are anticipated with installation since DEC Standard Pascal

was used and system calls were minimized.

6 . 2 RECOMMENDATIONS.

There are two user requirements, identified during this

study, which require further study.

The capability to generate input buffers could loosely

be thought of as a peripheral simulator. The simulator

would replace the RF and A/D portion of the system. This

would enable the exact duplication of conditions between

tests, this would also allow the simulation of signals

beyond the capabilities of the threat generators.

The Automated generation of test data would aid the

engineer in selecting good test data. The generation of

test data for the EID would be simpler than for the OFP,

* because the EID is constructed using rigid rules.

-49-

Bibliography

1. 62F026000. AN/ALR-46(V) Integration aJJ oQL Sytem
S Documentation. Buffalo NY: Comptek Research
Inc., 1981.

2. 62U026003. ANLALR-46VI) Integration SuRpQ.L S UserJ
Guide. Buffalo NY: Comptek Research Inc., 1981.

3. 62U026007. CM-442 A Tecnical Manual. Buffalo
NY: Comptek Research Inc., 1982.

4. 62U026008. CM-442A Ada & er Tehnical Manual. Buffalo
NY: Comptek Research Inc., 1982.

5. 62U026009. DX Interface T Manual. Buffalo NY:
Comptek Research Inc., 1982.

6. 9022-78R. An Introduction to S tr Analy
and Design Tehniqu. Waltham, Massachusetts: SofTech,
Inc., 1976.

7. AA-H485A-TE. VAX-1I PASCAL User' GUIDE. Maynard,
Massachusetts: Digital Equipment Corporation, 1979.

8. Bibbens, Terry E. "EW the Unique Weapon, sjgna .
Falls Church, Virginia: Armed Forces Communication and
Electronics Association, 18-22 (March 1981).

9. Fairley, Richard E. "ALADDIN: Assembly Language
Assertion Driven Debugging Interpreter," IEEE
Transactions oAQSfl, Engineering. VIl. SE-5, No.
A,- 426-428 (July 1979).

10. Howden, William E. "A Survey of Dynamic Analysis
Methods," Tutorial: Software Testing k Vaidation
TehnigUes, edited by Edward Miller and William E.
Howden. 184-206. New York, N. Y.: Institute of
Electrical and Electronics Engineers, 1978.

11. Howden, William E. "A Survey of Static Analysis
Methods," Tuoil Software Testing k Validation
Tachnig., edited by Edward Miller and William E.
Howden. 82-96. New York, N. Y.: Institute of
Electrical and Electronics Engineers, 1978.

12. Mitchel, William B. Digital mulation a& a EW
Software kn tnce 2 . Presented at Electronic
Warfare Symposium VI, Robins AFB, Georgia: March 1981

-50-

13. Mitchal, William B. and Gary W. Little. "Performance
Analysis of Electronic Warfare Systems Software,"
Presented at the National Aerospace Electronics
Conference, Dayton, Ohio: May 1978.

14. MMROI 800-01. Software njg Processing/Configuration
Mana ement forL M SitgM.. Robins AFB, Georgia: Warner
Robins Air Logistics Center, Directorate of Material
Management, Electronic Warfare Division, 1979.

15. Myers, Glenford J. The 2rtL Software Tasting. New
York, NY: John Wiley & Sons, 1979.

16. R-3636-9234. TIM AL-4i Systg Decit and Related
S Functions. Belmont, California: Dalmo Victor
Corporation, 1978.

17. Ramamoorthy, C. V., et al. "Optimal Placement of
Software Monitors Aiding Systematic Testing," I
Transactions on S Engineering. YQL, SE-I. N.,
1: 403-411 (December 1975).

18. Reifer, Donald J. and Stephen Trattner. "A Glossary of
Software Tools and Techniques," Cmter, 52-59 (July
1977).

19. Simpson, Henry. "A Human-Factors Style Guide for
Program Design",BYTE. 2: 108-132 (April 1982).

20. Tausworthe, Robert C. Standardized Deolfmnt 2t
ComPuter Sotware,_ Part I.,_ Methods. Washington D.C.:
U.S. Government Printing Office, 1976.

21. Tausworthe, Robert C. Standardized Develorment 2f
SCogMtex S Par .I. 1,standad. Washington D.C.:
U.S. Government Printing Office, 1978.

22. Thames, J. Wayne. M= ALR-46 Comuter G S em
fr h Robins Mj Eeric Warfwar e
Enginreeing Branch Laboratory. MS Thesis. Wright
Patterson AFB, Ohio: School of Engineering, Air Force
Institute of Technology, December 1981.

23. The International Countermeasures Hundkg (Second
Edition), edited by Harry F. Eustance. Palo Alto,
Californa: EW Communications Inc., 1976.

24. Weinberg, Victor. StrJcturd Analsis. New York, New
York: Yourdon Press, 1980.

25. Yourdon, Edward and Larry L. Constantine. S
Dein. Fundamentals ot I Dicgln 2L CQ te

Prog and System Design. Englewood Cliffs, New Jersy:
Prentice Hall, Inc., 1978.

- 51 -

- ". ~ . . .'- d~
n

. . ' d "' "" " " i

APPENDIX A

INDEX U AVAILABLE SOFTWARE TQOLS

This appendix contains four software tools identified in

this study which are directly applicable for testing the

ALR-46 flight software. The name of the tool is given along

with its source and description. The tools are divided into

two groups, those used for static analysis and those used

for dynamic analysis.

4 -52-

- .. ,.- .

A1 STATIC ANALYISa TOL.

.. NAME: EID Tools

SOURCE : Comtek Reasearch Inc.

DESCRIPTION : Examines the EID database for violations

of structure rules.

2. NAME: SCOM

SOURCE: Data General Corp.

DESCRIPTION: Utility which is part of the Advanced

Operating System (AOS). Identifies the differences

between two source or text files. If the program finds

differences, it outputs either a message or the

differences. The program will then attempt to

resynchronize.

A.2 DYNAMIC AYSTS TOOLS.

1. NAME: ALLADIN

SOURCE: Richard E. Fairley

DESCRIPTION: Assembly Language Assertion Driven

Debugging Interpreter.

-53-

2. NAME: RWR Simulator

SOURCE: Comtek Research Inc.

DESCRIPTION: Simulator for the ALR-46 Radar Warning

Receiver. The RWR Simulator consists of three

components: an Environment Simulator, a Receiver

Simulator, and the operational flight software.

54

APPENDIX B

This appendix describes the formats for the

event/location file and the extracted data file. The file

required by the data extraction subsystem is described

first. The file produced by the data extraction subsystem

is described second.

CONTENTS

1. Event/Location Specification File 56

2. Extracted Data File 57

- 55 -

B.l EVENT/LOCATION SPECIFICATION FILE•

This file contains addresses which specify "event"

locations, and "location" address limits. An "event" occurs

whenever the data extraction subsystem detects a memory

"fetch" on a memory address flagged for extraction. A

"location" occurs whenever the data extraction subsystem

detects a "memory write" to a address flagged for

extraction. The format of the file is as follows

(Ref 2: Sec 4, 27):

address of event 1
address of event 2

address of event n
0
lower address - upper address of first contiguous data block
lower address - upper address of second contiguous data block

lower address - upper address of final contiguous data block

The event addresses are entered first, one per line,

and are terminated by a line containing a zero. The zero

terminator must be present even if no event addresses are

specified. Event addresses are specified by a

right-justified, five-digit, octal number.

The data location address limits are entered following

the event addresses. The data address location address

limits consist of a lower address limit, followed by a

space, comma, or a hyphen, then followed by the upper

-56-

address limit. One pair of address limits are entered per

line. The address limits are right-justified, five-digit,

octal numbers as required by the event addresses. If a data

block is only one word long, both addresses are set equal to

the address of the word. The same address cannot appear as

both an event address and be contained a data block defined

by a location pair (Ref 2: Sec 4, 27-29). An example of an

acceptable event/location file follows:

00537
745

01243
0
07775 10003
20105,20105
22351-23200

*B.2 EXTRACTED DATA F.LE.

The data extracted by a "location" is the address

extracted and the value written to that address. The data

extracted by an "event" is a -1 marker, followed by its

address, followed by the high and low 16 bits of the clock.

The formats of the two data extraction sequences are

(Ref 5: Sec 3, 9):

1. Location

ADDRESS
DATA

2. Event

-1 MARKER

-57-

ADDRESS
CLOCK HIGH (MSBs)
CLOCK LOW (LSBs)

The 32-bit clock free runs at 114Hz, providing a 1 usec

LSD (Ref 5: Sec 3, 6).

-58-

APPENDIX C

This appendix contains the Structured Analysis and

Design Technique (SADT) diagrams used in developing the

software requirements and data flow for the Data Extraction

and Analysis System.

CONTENTS

1. Data Analysis 60

2. Performance Analysis 61

*3. Coverage Analysis 62

4. Error Analysis 63

-59-

C.1 DATPA-ANALYSIS

USERINPUT

DO PERFORMANCE_.DISPLAY

DO COVERAGE-DISPLAY

DO D1 T RKFILDISPLAY
TRACKERRLR
ANANALYSIS

DO JRWR DISPLj
RWR

-60-

C.2 PERFORMANCEANALYSIS

ENTRY+EXIT_-ADDRESSES

*USER- BUILD

INAWDATAFILE

PEERFORMANCE

DATA DISPLAY

4 -61-

C.3 COVERAGEANALYSIS

USER-. BUILD DXPILE

RAWDATAPILE

e -62-

* CA ERROR-ANALYSIS

USER_ BUILD DXPILE

RAWDAT&FPILE

-63-

APPENDIX D

This appendix contains the structure charts used in the

detailed design of the Data Extraction and Analysis System.

CONTENTS

1. Data Analysis 65

2. Help User 66

3. Select Mode 67

4. Do Performance Analysis 68

5. Build Performance Dx-file 69

6. Reduce Performance Data 70

7. Do Coverage Analysis 71

8. Build Coverage Dx_file 72

9. Reduce Coverage Raw Data 73

10. Do Error Analysis 74

11. Build Error Dx_file 75

12. Reduce Error Raw Data 76

-64-

D.*1 D=Z ANALYSIS.

DO
DATA

ANALYS IS

* - commndn~ mod\

GET HEPSELECT
COMMAND USRMODE

4 -65-

D.1.1 H912. Uge~r

'Itmode
HELP USER

-66 -

D.1.2 SelectMode -

nIT mode

.SELECT

LLDE

help-evel

i/

DO DO
PERFOFMANCE TRACKFILE

ANALYS IS ANALYS IS

helplevel

DO DO DO
COVERAGE ERROR RWR
AL I ANALYS IS DISPLAY

67

D. 1.*3 Pe~I.romance Analysis

help-level

DO
PE RFORMANCE

ANALYS IS

* helpleve# h\ead

DISPLAY 9REDUCE
PERFORMANCE Ihead PERFORMANCE

HELP DATA

BUILD COLLECT
PERFORMANCE PERFORMANCE

DX FILE DATA

-68

D.1.3.1 Build Performance x file -

head

BUILD
PERFORMANCE
DX FILE

entry-address

exitaddress

BUILD
PERFORMANCE
FILE ENTRY

entry-addresss exitaddress

GET GET
ENTRY EXIT
ADDRESS ADDRESS

4

4 -69 -

D.1.3.2 Reduce Performance EA Dat

head

REDUCE
PERFORMANCE
PAW DATA

~head

SORT CALCULATE
PERFORMANCE EXECUT ION

RAW DATA T IME

4 -70-

D.1.4 Do Coverage Analysis.

help..level

COVERAGE
ANALYSIS

help-level,

DISPLAY REDUCE
COVERAGE COVERAGE
HELP DATA

BUILD COLLECT
COVERAGE COVERAGE
DX FILE DATA

-71 -

BUILD
COVERAGE

DX FILE

coy address

[GETf
PAHMARKER

-72-

D.1.4.2 Reduce Cov~erag~e. AK Data

REDUCE
COVERAGE
RAW DATA

total-adr

SORT COUNT
COVERAGE PATH
RAW DATA TRAVERSAL S

4 -73-

D.1.5 P- Error Analyas.&

help-level

DO
ERROR

ANALYS IS

help-level

DISPLAY REDUCE
ERROR ERROR
HELP DATA

BUILD COLLECT
ERROR ERROR

DX FILE DATA

-74 -

D.1.5.1 Build Error Qx -

BUILD
ERROR

DX FILE

err-address

m-ET
IVARIABLE

_ADDRESS

-7

*- -75-

D.1.5.2 Rguc EXrrrai~L.

REDUCE
ERROR

RAW DATA

root

total-adr

SORT DETERMINE
ERROR MIN &MAX

LRAW DATA VALUES

4 -76-

APPENDIX E

This appendix contains the description of all

processes, constants, and variables used in the Data

Extraction and Analysis System. The symbols us~ed in

describing the data composition will be defined followed by

the data dictionary.

CONTENTS

1. Symbols and Meanings....... . .** * * . . . 78

2. Data Elements 79

3.* Data Flows 86

4 -77-

E.*1 SYMBOQLS MMD ME~ANINGS

1. =is composed of

2. +and

3. Ior

4. []choose one of (exclusive or)

5. < > at least one of (inclusive or)

6. x { }Y Iterations of the values from x to y times

7. ()Optional value

8. * *Comment

9. <=Less than or equal to

*-10. >= Greater than or equal to

ill < Not equal to

12. >Greater than

13. <Less Than

-78-

* I . _ , _ . ,.. .

E.2 PL ELEMENTS

1. DATA ELEMENT NAME: bel

DESCRIPTION: ASCII bell

COMPOSITION: Character

ALIASES: None

2. DATA ELEMENT NAME: clock_high

DESCRIPTION: High 16 MSBs of elapsed time clock

COMPOSITION: Integer

ALIASES: None

3. DATA ELEMENT NAME: clocklow

DESCRIPTION: Low 16 LSBs of elapsed time clock

COMPOSITION: Integer

ALIASES: None

4. DATA ELEMENT NAME: column

DESCRIPTION: Column counter

COMPOSITION: Integer

ALIASES: None

5. DATA ELEMENT NAME: convert

DESCRIPTION: Conversion value for lower to upper case

COMPOSITION: Integer

ALIASES: None

-79 -

.| _ |I I_ I I I IE . . ! ! -. - - , .

6. DATA ELEMENT NAME: entry-text

DESCRIPTION: Entry address

COMPOSITION: String

ALIASES: None

7. DATA ELEMENT NAME: error_address

DESCRIPTION: Error analysis "location" address

COMPOSITION: Integer

ALIASES: None

8. DATA ELEMENT NAME: errortext

DESCRIPTION: Text form of erroraddress

COMPOSITION: String

ALIASES: None

9. DATA ELEMENT NAME: esc

DESCRIPTION: ASCII escape

COMPOSITION: Character

ALIASES: None

10. DATA ELEMENT NAME: event_address

DESCRIPTION: Address of an "event"

COMPOSITION: Integer

ALIASES: None

- 80 -

11. DATA ELEMENT NAME: eventtime

DESCRIPTION: Time an "event" occured

COMPOSITION: Integrer

* ALIASES: None

12. DATA ELEMENT NAME: execute_time

DESCRIPTION: Execution time of a routine

COMPOSITION: Integer

ALIASES: None

13. DATA ELEMENT NAME: Exittext

DESCRIPTION: Exit address

COMPOSITION: String

ALIASES: None

14. DATA ELEMENT NAME: goodaddress

DESCRIPTION: Flag

COMPOSITION: [true, false]

ALIASES: None

15. DATA ELEMENT NAME: goodinput

DESCRIPTION: Flag

COMPOSITION: [true, false]

ALIASFS: None

- 81 -

.

16. DATA ELEMENT NAME: I

DESCRIPTION: Column counter

COMPOSITION: Integer

ALIASES: None

170 DATA ELEMENT NAME: input-text

DESCRIPTION: User input

COMPOSITION: String

ALIASES: None

18. DATA ELEMENT NAME: invalidchar

DESCRIPTION: Flag

COMPOSITION: [truepfalse]

ALIASES: None

19. DATA ELEMENT NAME: last

DESCRIPTION: Flag

COMPOSITION: [truefalse]

ALIASES: None

20. DATA ELEMENT NAME: lastchar

DESCRIPTION: Column count of last char

COMPOSITION: Integer

ALIASES: None

82

21. DATA ELEMENT NAME: marker

DESCRIPTION: -1 marker of an "event" record

COMPOSITION: Integer

ALIASES: None

22. DATA ELEMENT NAME: menu-input

DESCRIPTION: Menu selection

COMPOSITION: Character

ALIASES: None

23. DATA ELEMENT NAME: new_node

DESCRIPTION: Pointer to new node in binary tree

COMPOSITION: Pointer

ALIASES: None

24. DATA ELEMENT NAME: newstack

DESCRIPTION: Pointer to new stack entry

COMPOSITION: Pointer

ALIASES: None

25. DATA ELEMENT NAME: next

DESCRIPTION: Pointer to next linked list record

COMPOSITION: Pointer

ALIASES: None

- 83 -

26. DATA ELEMENT NAME: nexttime

DESCRIPTION: Pointer to time stack entry

COMPOSITION: Pointer

ALIASES: None

27. DATA ELEMENT NAME: octal-place

DESCRIPTION: octal_string column count

COMPOSITION: Integer

ALIASES: None

28. DATA ELEMENT NAME: octalstring

DESCRIPTION: Octal representation of decimal number

COMPOSITION: String

ALIASES: None

29. DATA ELEMENT NAME: quitinput

DESCRIPTION: User input for termination

COMPOSITION: Character

ALIASES: None

30. DATA ELEMENT NAME: routine

DESCRIPTION: Linked list element

COMPOSITION: routinename + entryaddress + exitaddress +
link

ALIASES: None

- 84 -

7-R124 712 AUTOMATED TOOLS FOR TEST AND ANALYSIS OF RADAR WARNING 2/2\
RECEIVER SOFTNA*RECU) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB ON SCHOOL OF ENGI.. J R ROBERTSON

UNCLASSIFIED DEC 82 AFIT/GCS/EE/82D-28 .F/G 1?/9 N

mIIIIIIII I I.,.EIE
ImhhhhhhhhhhIE
I flflflflflflflflflflflflflfl
EhhhhhhhhhhhhEli ,,:

*

.. . . .

- ..
-- - -- -. -. - -'-

'

-2.2
.1

.4- J

12.
ism

li1-i . . ,

I11L. 2 5 11111 LA

NATIONAL BUREAU OF STANDARDS-1963-A

m_ ..

' ' "* "" ' " "
" "j'

".

31. DATA ELEMENT NAME: stop-comand

DESCRIPTION: Flag

COMPOSITION: [truefalse]

ALIASES: None

32. DATA ELEMENT NAME: tab

DESCRIPTION: ASCII tab character

COMPOSITION: Character

ALIASES: None

33. DATA ELEMENT NAME: tail

DESCRIPTION: Linked list pointer

COMPOSITION: Pointer

ALIASES: None

34. DATA ELEMENT NAME: terminate

DESCRIPTION: Flag

COMPOSITION: [truefalse]

ALIASES: None

35. DATA ELEMENT NAME: transform

DESCRIPTION: Array

COMPOSITION: Array [performance. .test] of string

ALIASES: None

.5

4,° -85 -

,t S. t -

36. DATA ELEMENT NAME: weight

DESCRIPTION: Weight of a column in an octal digit

COMPOSITION: Integer

ALIASES: None

E.3 DATA PLOWS

1. DATA FLOW NAME: address

DESCRIPTION: Memory address

COMPOSITION: Integer

ALIASES: exit-address, entryaddress, coy_address,
error_address

2. DATA FLOW NAME: address_text

DESCRIPTION: String representation of a memory address

COMPOSITION: string

ALIASES: entrytext, exit_text, covtext, errortext

3. DATA FLOW NAME: adr_value

DESCRIPTION: Variable's value

COMPOSITION: Integer

ALIASES: None

4. DATA FLOW NAME: decimal

DESCRIPTION: Decimal number to be converted to octal

COMPOSITION: integer

ALIASES: covnode_adr, error_node_adr, min_value,
*| max_value

- 86 -

5. DATA FLOW NAME: error

DESCRIPTION: Flag

COMPOSITION: [true,false]

ALIASES: last

6. DATA FLOW NAME: father

DESCRIPTION: Pointer to node in binary tree

COMPOSITION: Pointer

ALIASES: None

7. DATA FLOW NAME: head

DESCRIPTION: Pointer to first linked list record

COMPOSITION: Pointer

ALIASES: None

8. DATA FLOW NAME: helplevel

DESCRIPTION: Determine the level of help required

COMPOSITION: [min, max]

ALIASES: None

9. DATA FLOW NAME: inputstring

DESCRIPTION: User input

COMPOSITION: String

ALIASES: None

:-.

~- 87 -

10. DATA FLOW NAME: mode

DESCRIPTION: data extraction mode

COMPOSITION: [performance, coverage, error track, rwr,
quit]

ALIASES: none

11. DATA FLOW NAME: newaddress

DESCRIPTION: Pointer to new node to be inserted into

binary tree

COMPOSITION: Pointer

ALIASES: None

12. DATA FLOW NAME: root

DESCRIPTION: Pointer to root node of binary tree

COMPOSITION: Pointer

ALIASES: None

13. DATA FLOW NAME: stack_top

DESCRIPTION: Pointer to top of stack

COMPOSITION: Pointer

ALIASES: entry-stack_top, time_stack_top

14. DATA FLOW NAME: stack_value

DESCRIPTION: Value of top of stack

COMPOSITION: Integer

ALIASES: entry-time, execute_time

- 88 -

, t

15. DATA FLOW NAME: total_addr

DESCRIPTION: Total addresses read from rawdatafile

COMPOSITION: Integer

ALIASES: None

E.4 FILES

1. FILE NAME: dx_file

DESCRIPTION: Data extraction specification file

COMPOSITION: Text

ALIASES: None

2. FILE NAME: raw_data_file

DESCRIPTION: Data extraction raw data file

COMPOSITION: File of integer

ALIASES: None

89

%-p
N

APPENDIX F

PASCAL SOURCE LISTING

This appendix contains the source listing for the Data

Analysis and Extraction System.

CONTENTS

1. Program data-analysis 92

2. Procedure get-..input 94

3. Procedure help-user 95

4. Procedure get...address 97

5. Procedure octal 99

6. Procedure perf-help 100

7. Procedure perf-build.dx 101

8. Procedure perf-collect_data 103

9. Procedure push-stack 104

10. Procedure pop..stack 105

11. Procedure perf_reduce_data 106

12. Procedure do-performance 109

-90 -

- . --. -,.

7. 7.

13. Procedure cov-help 110

14. Procedure coy_build.dx i11

15. Procedure ccv-collect_data 112

16. Procedure coy-tree_search 113

17. Procedure build-coy-tree 115

18. Procedure read_coy_tree *..........117

19. Procedure coy_reduce_data 118

20. Procedure do-coverage 120

21. Procedure errorhelp 121

22. Procedure error-build..dx 122

23. Procedure error_collect..data 123

24. Procedure err_tree_search 124

25. Procedure build_err-tree 126

26. Procedure read err tree 128

*27. Procedure error_reduce-data 129

28. Procedure do_error 131

29. Procedure do-trackfile 132

30. Procedure do-rwr ... *..........133

31. Procedure main executive 134

~91

F.1 PROGRAM DATA&ANALYSIS

P ROG R AM d at a a analy sis

VERSIO14 1.0 DEC 1982

AUTHOR:
Joel R. Robertson

LANGUAGE:
VAX-11 Pascal

PURPOSE:
This program builds the data extraction file,
collects data, and reduces the raw data.

REMARKS:
This program was developed as part of the author's
masters thesis at the Air Force Institute of
Technology.

(*$s-. ;suppress nonstandard warnings *
(*$w-. ;suppress variable length warnings *

program data-analysis (input,outputrdx..fileraw datafile);

type
token = packed array [l..121 of char;
validmode = (performancercoveragererror,

track, rwrrquit, test) ;
help-mnode = (min,max);
memory - integer;
address-string = Racked array [l..51 of char;
routine-.ptr = ^routine;
stack..ptr = Astack;
cov..ptr - ^coy-node;
err-ptr = err-node;
dx_data =integer;

data_file =file of dx_data;

routine = record
routine_name : packed array [l..101 of char;

*entry-..address : memory;
exit-address : memory;
entry..stack-top : stack..ptr;
time-stack..top : stack-.ptr;
link : routine..ptr

endi {routine)

-92-

stack -record
stack-time : integer;
stack-link : stack..ptr

end; (stack}

coy_node = record
coy_node_adr : memory;
path-count : integer;
left~right : cov..ptr

end; fcov..node}

err_node = record
err_node_adr : memory;
mm _value : integer;
max_value : integer;
left~right :err..ptr

end; {err..nodel

var
mode : valid-mode;
good...input : boolean;
transform : array [performance..test] of token;
input string : token;
stop-..command : boolean;
help-level : helpmode;
escptabrbel : char;
dx-file : text;
raw_data_file : data_file;

value
stop-..command :=false;

fend declarations

-93-

F.1.1 Procedure getinput -

PRO C E DU R E g e t-i n p u t

VERSION: 1.0 12-SEP-82

PURPOSE:
Inputs a string from the console and converts all
lower case characters to upper case.

INPUT:
none

OUTPUT:
input-string

GLOBALS USED:
none

REMARKS:

CALLED BY:
dataanalysi s

PROCEDURES AND FUNCTIONS CALLED:
none

procedure get_input(var inputstring : token);

var
I : integer; {column count}
convert : integer; {upper to lower case convertsion}

begin
convert :- ord('a') - ord('A');

.7. read(inputstring);
for I :- 1 to 12 do
if inputstring[I] in ['a'..'z'] then

input-string[I] :- chr(ord(input-strinq[I]) - convert);
end; (get_input

- 94 -

. .

F.1.2 Procedure help-ujser-

P ROC E DU RE h el1pu se r

VERSION: 1.0 13-SEP-82

PURPOSE:
This procedure types a menu on the users console
and accepts as input a menu selection. Also the
help level is set to maximum.

INPUT:
none

OUTPUT:
mode
help-level

GLOBALS USED:
none

REMARKS:

___ CALLED BY:

dataanalysi s

PROCEDURES AND FUNCTIONS CALLED:
none

procedure help..user(var mode :valid_mode;
var help-.level :help-.mode);

var
menu-input :char;

begin
helpjlevel :=max;

(set up menu)
writeln(esc,' (2j')l {clear screen}
writeln;
vriteln;
writeln(tab,'ALR-46 DATA EXTRACTION AND ANALYSIS SYSTEM');
writelni

* ~~writeln(tabtab,,'**** M E N U**t)
writeln;
writeln;
writeln(tab,'l. <PERFORMANCE> ANALYSIS');

-95-

writein;
writeln(tab,'2. <COVERAGE> ANALYSIS');
writein;
writein (tab, '3. <ERROR> CONDITION DETECTION');
writein;
writeln(tab,'4. <TRACK> FILE DISPLAY');
writein;
writeln(tab,'5. <RWR> GRAPHICS DISPLAY');
writein;
writeln(tab,'6. <QUIT> PROGRAM');
writeln;
write('ENTER CHOICE [l..61 => ');

readin;
read (menu..input);
while not (menu-input in ['1'..16']) do

begin
write(bel,'ERROR... RE-ENTER => ');
readin;
read(menu_input)

end; {while}

tdetermine mode
case menu-..input of

'1' : mode =pe rf ormance;
'2' : mode :=coverage;
'3' : mode :=error;
'4' : mode :=track;
'5' : mode :rwr;
'6' : mode :quit

end; {case)

end; {help-.user

-96 -

F.1.3 Procedure get_address -

PROCEDURE get _ address

VERSION: 1.0 28-SEP-82

PURPOSE:
This procedure returns the the address value
plus a right justified string representation
of the address.

INPUT:
none

OUTPUT:
address
addres s_text

GLOBALS USED:
none

REMARKS:

CALLED BY:
perfbuilddx
covbuilddx
errorbuilddx

PROCEDURES AND FUNCTIONS CALLED:
none

" ** I

procedure get-address(var address : integer;
var addresstext : address_string);

var
last_char : integer;
column : integer;
weight : integerl
goodaddress,
invalid_char : boolean;
inputtext : packed array [1..5] of char;

begin {get address}
good_address := false;
repeat

addresstext :-
invalid_char :- false;
readln (inputtext);

- 97 -

- ",i . . ' ," -t , .- , - m i i ~ it 't . . -• ' " l

- .. ." . . o - '"

column : 1;
repeat
lastchar := column;
column := column + 1

until (inputtext[column] - ' ') or (column > 5);
for column := last_char downto 1 do
address_text[5-(last_char-column)]:=inputtext[column];

*for column := 5 downto (6-last_char) do
if not (address_text[column] in ['0'..'7']) then

invalid_char :- true;
if invalid_char then
write('INVALID ENTRY => ')

else
goodaddress := true;

until good_address;

{convert octal string into decimal integer)
address := 0;
for column := 1 to 5 do

begin
if address_text[column] in ['1'..'7'] then
weight := ord(address_text[column]) - ord('0')

else
weight := 0;

case column of
1 : address := address + 4096 * weight;
2 : address := address + 0512 * weight;
2a63 : address := address + 0064 * weight;4 : address := address + 0008 * weight;

~5 : address := address + weight
end {case}

end {for}
end; {get address

bI

~- 98 -

F.l.4 Procedure octal -

PROCEDURE octal

VERSION: 1.0 01-DEC-82

PURPOSE:
This procedure types on the console the octal
representation of the decimal number input

INPUT:
decnumber

OUTPUT:
none

GLOBALS USED:

none

REMARKS:

CALLED BY:
readcovtree
read_err_tree

PROCEDURES AND FUNCTIONS CALLED:
none

* *** }

procedure octal(dec_number : integer);

VAR
octal_string : packed array [l..6] of char;
octal-place : integer;

begin
octalstring : I'

*- .octal-place :- 0;

{build octal string}
4! repeat

octalplace :- octal-place + 1;
octal_string[octalplace] := chr((dec_number mod 8)+48);

*decnumber := decnumber div 8
until decnumber - 0;

{type out octal string}
for octal-place :- 6 downto 1 do
write (octalstring [octalplace])

end; {octal

- 99 -

F.1.5 Procedure perf-help -

PROCEDURE per f help

VERSION: 1.0 13-SEP-82

PURPOSE:
This procedure types instructions on the users
console if help-level is set to 'max'.

INPUT:
helplevel

OUTPUT:
none

GLOBALS USED:
none

REMARKS:

CALLED BY:
do-performance

PROCEDURES AND FUNCTIONS CALLED:
none

procedure perf-help(help-level : help-mode)l

begin
writeln(esc, O[2j'); [clear screen}
writeln(tab,°*** PERFORMANCE ANALYSIS MODE ***)
writelnvWriteln;
if help-level = max then

begin
writeln
('This mode determines the execution for program');
writeln
('subroutines. An entry and an exit address must be');
writeln('provided.')

end;
end; {perfhelp

- 100 -

P.1.6 Procedure perf-builddx -

PROCEDURE per f_ build _ dx

VERSION: 1.0 13-SEP-82

PURPOSE:This procedure builds the performance analysis
dx file.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
dx_file

REMARKS:

CALLED BY:
do-pe rformance

PROCEDURES AND FUNCTIONS CALLED:
get_address

procedure perf-builddx(head : routineptr);
var
entry-text : address_string;
exit_text t address_string;
quitinput : char;
terminate : boolean;
tailnext : routineptr;

begin
terminate :- false;
tail :- head;
open (dx_file, 'DXFILE' ,new);
rewrite (dx-file);
writeln;writeln;

S. .. repeat
writeln; writeln;writeln (' ** ');

*4 writeln;
writeln('ENTER NAME OF SUBROUTINE');
write('E10 char max] -> ');
readln(tail .routine_name);

- 101 -

-47

writein; writein;
writeln('ENTER ENTRY ADDRESS');
write('[l..77777 octal] =)
get address(tail.entry.addressrentry..text);
writein; writein;
vriteln('ENTER EXIT ADDRESS');
write('[l..77777 octal] -> 1);
get_addreus(tailA.exit_addressrexit-text);
writein; writein;

(initialize stacks}I
tailA'.entry-.stack~top :mnil;

writeln (dx..fileentry..text);
writeln(dxjfile~exit..text);

write('terminate input [Y/N] =)
readin (quit-..input);
writeln; writeln;
if quit..input in ['Y','y'] then
begin

terminate :=true;
tail^.link :=nil

end
else

begin
new (next);
tail'%link :-next;
tail :next

end;

until terminate;
writeln (dx-..file,' 0');
close (dx...file)

end; (perf-build-dx

-102-

V.1.7 Procedure perfcollect_data -

R 0PROCEDURE per f c o I I e c td a t a

VERSION: 1.0 13-SEP-82

PURPOSE:
This procedure collects the performance analysis
data.

INPUT:

OUTPUT:

GLOBALS USED:
dxfile
raw_data_f ile

REMARKS:
dummy module - contractor supplied routine

CALLED BY:
do-performance

PROCEDURES AND FUNCTIONS CALLED:
none

,.- *** }

procedure perf-collect_data;

begin
writeln;

!+ wvriteln (I **) ;

writeln('*** procedure perfcollect_data called ***');
w~~riteln (' **)

writeln
end; {perf-collectdata

- 103 -

.

F.1.8 Procedure pushstack -

PROCEDURE push _ stack

VERSION: 1.0 12-OCT-82

PURPOSE: pushes a value on the stack pointed to by
stack~top.

INPUT:
stack-top -pointer to top of stack
stackvalue -value to be pushed on stack

OUTPUT:
stack-top -new top of stack

GLOBALS USED:
none

REMARKS:

CALLED BY:
perf_reduce_data

PROCEDURES AND FUNCTIONS CALLED:
none

procedure push-stack(var stack_top : stack-.ptr;
stack_value : integer);

var
newstack : stack-ptr;

begin
new (new-stack);
new_stack4.stack_time :- stack_value;if stack-tot nil then
new-stack .stack_link := nil

else
newstack'.stack_link :- stack-top;

stacktop :- new_stack
end; {pushstack

-104-

P.1.9 Procedure popstack-

P ROC ED U RE p o _ st a ck

VERSION: 1.0 11-OCT-82

PURPOSE:
pops value from top of stack

INPUT:
stack..top -pointer to top of stack

OUTPUT:
stack_value -value popped from stack
stacktop -new top of stack

GLOBALS USED:
none

REMARKS:

CALLED BY:
perf_reduce_data

PROCEDURES AND FUNCTIONS CALLED:
none

procedure pop-..stack(var stack_top : stack_.ptr;
var stack-value : integer;
var error : boolean);

begin
if stack_top =nil then

error := true
else

beg in
stack_value :- stack..top"".staek.time;
stack-top :=stack_top".stack-link

end;
end; {pop..stack

-105-

F.1.10 Procedure perfreduce_data -

PROCEDURE per f_ reduce _ data

VERSION: 1.0 21-NOV-82

PURPOSE:
This procedure reduces the performance analysis
data.

INPUT:
head -front of linked linked list
rawdatafile -file produced by dx system

OUTPUT:
none

GLOBALS USED:
rawdata_file

REMARKS:

CALLED BY:
do-performance

PROCEDURES AND FUNCTIONS CALLED:
push_stack
popstack

procedure perfreduce_data(head : routine_ptr);

vattail : routineptr;

count : integer;

{'event' record)
marker : integer;
event_address : integer;
clock_high : integer;
clock_low : integer;
eventtime,
entrytime,

execute-time : integer;
next : routineptr;
errorlast : boolean;
nexttime : stack.ptr;

begin

-106-

open~raw_data_file,'DXDATA',old);
reset(raw-data-file);
writein;
while (not eof(raw.data..jile)) and (not error) do

beg in
read(raw-data-file,markerlevent address,

clock-high~clock-low);
if marker = -1 then
begin
next :- head;
event_time :- clock_low + 65536 * clock..high;
repeat
if nextA.entry..address = event_address then

push..stack (next" .entry..stack..topevent-time);
if next .exit-address = event-address then
begin
pop-..stack (nextA .entry-..stack-.top~entry..timeerror);
execute_time :- event_time - entry-..time;
pushstack (nextA .time-stack..toprexecute-time)
end;

nexct :- next '.link;
until next = nil

end
else

begin
error :-true;
writeln('RAW DATA FILE FORMAT ERROR')

end {else)
end; (while}

close~raw_data_file);

(~Format and print out the execution times *

if error - false then
begin
writeln (esc,' L2j'); {clear screen}
next := head;
repeat
count :- 0; (reset count}
writein;
write(tab,'EXECUTION TIMES FOR SUBROUTINE 1);
writeln(next"A.routine-name);

4 writeln
(tab,' ---------------------------------------I);
next-time :-nextA~time-stack_top;
repeat

last :-false; (not end yet}
pop...stack(nexttimetexecute timerlast);
if not last then (stack empty ?}

% begin
write (execute..time);
count :=count +1

-107-

end;
if count > 4 then

begin
count := 0; {reset count)
writeln {new line}. :.,end

until last;
next := next*,link;
writeln;
writeln
(tab,' --------------------------------------)

until next = nil;
writeln;

end
end; {perfreduce_data

- 108 -

-;-;-2

F.1.11 Procedure do-.performance -

PROCEDURE do pe r f ormance

VERSION: 1.0 13-SEP-82

PURPOSE:
This procedure does the subroutine performance
analysis

INPUT:
help-level

OUTPUT:
head

GLOBALS USED:
none

REMARKS:

CALLED BY:
data-analysis

PROCEDURES AND FUNCTIONS CALLED:
perf-help
perfbuilddx
perf_collect_data
perf_reduce_data

procedure do.performance(help-level : help_.mode);

var
head : ̂ routine;

begin {do-performance }
perfhelp(help-level);

{build the performance analysis dx file)
new(head)
perf-builddx(head)l

{call the contractor supplied data extraction routine)
perfcollect_data;

*{reduce the extracted data)
perfreducedata(head) l

endl {do-.performance

-109-

F.1.12 Procedure coy_help -

P R O C E DU R E c o v h e 1 p

" VERSION: 1.0 22-NOV-82

PURPOSE:This procedure types instructions on the users
console if help-level is set to 'max'.

INPUT:
help-level

OUTPUT:
none

GLOBALS USED:

none

REMARKS:

CALLED BY:
docoverage

PROCEDURES AND FUNCTIONS CALLED:
none

** }

procedure covyhelp(help-level : help-mode);

begin
writeln(esc,' [2J'); (clear screen}
writeln(tab,'*** COVERAGE ANALYSIS MODE ***S);
if help-level = max then
begin

writeln
('This mode counts the occurances of path markers');
writeln('to determine the testing coverage.');

end;
writeln;
writeln('Enter path marker address <0 to end>')

end; {covyhelp

- 110 -

P.1.13 Procedure coy-buil..dx-

P ROC ED U RE coy v bu il1d d dx

VERSION: 1.0 22-NOV-82

PURPOSE:
This procedure builds the coverage analysis
dx file. dx_file will be an 'event' type file.

INPUT:.
none

OUTPUT:
none

GLOBALS USED:
dx_file

REMARKS:

CALLED BY:
do-coverage

PROCEDURES AND FUNCTIONS CALLED:
get-address

procedure coy_build..dx;

var
coy-address : memory;
cov..text : addressstring;

begin
open (dxfile, 'DXFILE' ,new)j
rewrite (dx...file);
repeat
write('PATH MARKER [l..77777 octal] -)
get-address(cov_address cov..text);
writeln (dx...filetcov..text)

until coy_address 0;
close (dx.f ile)

endi fcov-build-dx

F.1.14 Procedure ccv_collect_data-

P ROC ED U RE coy v c oll1e ct d dat a

VERSION: 1.0 27-SEP-82

PURPOSE:
This procedure collects the coverage analysis
data.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
dx_file
raw-data-file

REMARKS:
dummy module -contractor supplied routine

CALLED BY:
do-coverage

PROCEDURES AND FUNCT IONS CALLED:

procedure coy_collect-data;

begin
writeln;

4writeln(I*** procedure coy_collect_data called **)

writeln
end; {cov...collect-data,

-112-

P.1.15 Procedure coy_treesearch -

PROCEDURE co _ tr ee _ search

VERSION: 1.0 21-NOV-82

PURPOSE:
This procedure searches the binary tree for an
address. If the address is found the path count
is incremented, otherwise the address will be
inserted into the binary tree.

INPUT:
father
new_address

OUTPUT:
none

GLOBALS USED:
none

REMARKS:
this is a recursive procedure

CALLED BY:
build_cov_tree

PROCEDURES AND FUNCTIONS CALLED:
cov_tree_search

procedure coy_treesearch(var father: covptr;
newaddress : memory);

var
new_node : covptr;

begin
if new_address - father4.covnode_adr then

{we found it update count}
father".path-count := father".pathcount + 1

else
if newaddress < father".covnodeadr then

begin
if father^.left - nil then

begin
new (new-node)i
fatherA.left :- newnode;
with newnode4 do

- 113 -

begin
cov_node_adr := new_address;
y athcount := 1;
eft : nil;

right : nil

end end (with}
.," -. ,.end

else
begin

father := father".left;
cov_tree_search(father,newaddress)

end
end

else
if fatherA.right = nil then

begin
new(new-node);
father".right := new_node;
with new_nodeA do

begin
cov_node_adr := new_address;
pathcount :- 1;
left = nil;
right : nil

end {with}
end

else
O ebegin

father := father'.right;
coy_treesearch (father, new-address)

end (else)
end; (covtree_search

I

-114

P.1.16 Procedure build_covtree -

PROCEDURE build _ cov_ tr ee

VERSION: 1.0 21-NOV-82

PURPOSE:
This procedure builds the coverage analysis
binary tree.

INPUT:
root
total_adr

OUTPUT:
none

GLOBALS USED:

rawdata_file

REMARKS:

CALLED BY:
covreducedata

PROCEDURES AND FUNCTIONS CALLED:
coV_tree_search

procedure build_coy_tree(var root : covptr;
var total_adr : integer);

var
newaddress : memory; {address to be inserted in tree}
newnode, {pointers to nodes)
father : cov-ptr;

begin {build_cov_tree)
open(rawdatafile, 'DXDATA', old);
(insert the first word in the root node)
reset(raw_data_file); {discard marker)
if not eof(rawdatafile) then

begin
get(raw-data-file); {get address}
new-address :- rawdatafile";
total-adr :- 1;
with rootA do

begin
cov_nodeadr := new_address;
path_count : 1;

0 - 115 -

left - nil;
right := nil

end; (with)
get(raw_data-file); {discard clock high}
get(raw_datafile); {discard clock low)

end
-- else

root : nil;

{attach each address to its father)
get(raw-datafile); {discard marker)
while not eof(rawdatafile) do

begin
get(raw_datafile); {get address}
newaddress := raw-data_fileA;
total_adr := totaladr + 1;
father :- root; {first father is root}
{insert each path address into tree}
cov_treesearch(father,newaddress);
get(raw_datafile); {discard clock high}
get(rawdata-file); {discard clock low}
get(rawdatafile); {discard marker}

end; {while}
close(raw_data_file)

end; {buildcoy tree

4i - 116-

. J

-t . .- .. - .--- -7

F.1.17Procedure read_ coy_tree-

P ROC ED U RE r e ad c coy v t ree

VERSION: 1.0 01-DEC-82

PURPOSE:
This procedure does an in order traversal of the
binary tree.

INPUT:
root

OUTPUT.: on

GLOBALS USED:
none

REMARKS:
recursive procedure

CALLED BY:
coy_reduce_data

PROCEDURES AND FUNCTIONS CALLED:
read_coy_tree
octal

procedure read-cov..tree(root :cov..ptr);

begin
if root 0> nil then

begin
(stoping state not reached -perform recursion)
read_coy_tree~root"".left);
vrite (tab);
octal (rootA'. cov...nodeadr);
writeln(' => 1,rootApath..count);

* read_cov..tree(rootA4.right);
end {if)

end; {read...cov-tree

-117-

P.1.18 Procedure coy_reducedata -

PROCEDURE cov r educe _ da ta

VERSION: 1.0 21-NOV-82

PURPOSE:
This procedure reduces the coverage analysis
data. First it builds a binary tree and counts
the number of traversals, second, it does an
inorder traversal of the tree and prints out
the number of traversals.

INPUT:
none

OUTPUT:
none

GLOBALS USED:

raw_data_file

REMARKS:

CALLED BY:
do_coverage

PROCEDURES AND FUNCTIONS CALLED:
build_cov_tree
read_cov_tree

** }

procedure coy_reducedata;

var
totaladdr : integerl {number of addresses read)
root : cov_.ptr; {root of tree}

begin
writeln;
new(root); {create root node}
build_cov-tree(roottotaladdr);
if totaladdr <> 0 then

begin
writeln(esc,'[2J'); {clear screen)
writeln;
writeln(' ADDRESS NUMBER OF TRAVERSALS');
writeln(' ------- -)
readcov_tree(root)l
writeln;

- 118 -

.

write('TOTAL NUMBER OF PATHS COVERED
writeln(total_addr: 2)

end
else
writein ('FILE EMPTY')

end; (cov...reduce_data

-119-

F.1.19 Procedure do_coverage -

PROCEDURE do _ coverage

VERSION: 1.0 27-SEP-82

PURPOSE:
This procedure does the coverage analysis.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
none

REMARKS:

CALLED BY:
dataanalysi s

PROCEDURES AND FUNCTIONS CALLED:
tcovJhelp

covbuilddx
coy_collectdata
covreduce_data

** }

procedure do_coverage(helplevel : help-mode);

begin
covhelp (help-level)

(build the coverage analysis dx file}
, ",i-,cov-build-dxi

(call the contractor supplied data extraction routine)
coy_collect_data;

(reduce the extracted data}
cov_reduceda ta;

end; {docoverage

4

120

P.1.20 Procedure error_help-

P ROC E DU RE er r or h hel1p

VERSION: 1.0 22-NOV-82

PURPOSE:
This procedure types instructions on the users
console if help-level is set to 'mx'

* INPUT:
h elp-level

OUTPUT:
* . none

*GLOBALS USED:
none

REMARKS:

CALLED BY:
do-error

PROCEDURES ANDl FUNCTIONS CALLED:
none

procedure error-help(help..level :help-mode);

begin
vriteln(esc,' [2j')p fclear screen)
writeln(tab,'*** ERROR ANALYSIS MODE **)

if help-level = max then
begin

writein
('This mode determines the minimun and maximum');
writein
('values obtained by a program variable during');
writeln('a particular test run.')

end;
vriteln;
yr iteln
('Enter variable addresses to be extracted in octal');
writeln('end entry with 0.')

end; {error..help

* -121-

F.l.21 Procedure error_build_dx -

PROCEDURE er ror _ build _ dx

VERSION: 1.0 22-NOV-82

PURPOSE:
This procedure builds the error analysis dx file.
The dxfile is a 'location' format file.

INPUT:
none

OUPUT:
none

GLOBALS USED:
dx_file

REMARKS:

CALLED BY:
do_error

PROCEDURES AND FUNCTIONS CALLED:
getaddress

procedure errorbuilddx;

var
error_address : memory;
errortext : address_string;

begin
open(dxf ile, 'DXFILE' ,new);
rewrite (dxfile);
writeln(dxfile,' 0');
repeat
write('ADDRESS [l..77777 octal] => ');
getaddress(error_addresserror_text);
if erroraddress <> 0 then
begin
writeln(dx_fileerror-text, ' ',errortext)

end
until erroraddress = 0;
close (dx-file)

end; {errorbuilddx

-122-

" . ; ° .- -. "I *,. --

P.1.22 Procedure error-collect-data-

P ROC ED UR E e rro0r c coll1e ct d dat a

VERSION: 1.0 27-SEP-82

PURPOSE:
This procedure collects the error analysis data.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
dx_file
raw-data-file

REMARKS:
dummy module -this routine is contractor supplied

CALLED BY:

Gre do_error

PROCEDURES AND FUNCT IONS CALLED:

procedure error_collect_data;

begin
writeln;

writeln('*** procedure error_collect.data called **)

writeln
end; (error_collect_data

4 -123-

P.1.23 Procedure err_tree_search -

PROCEDURE err _ tree _ search

VERSION: 1.0 04-NOV-82

PURPOSE:
This procedure searches the binary tree for an
address. If the address is found new min and
max values will be calculated, otherwise the
address will be inserted into the binary tree.

INPUT:
father
new_address
adr_value

OUTPUT:
none

GLOBALS USED:
none

REMARKS:this is a recursive procedure

CALLED BY:
build_err_tree

PROCEDURES AND FUNCTIONS CALLED:
err_tree_search

. ** }

procedure errtree_search(var father : errptr;
newaddress : memory;
adr_value : integer);

var
newnode : err-ptr;

begin
if new_address = father^.err_node_adr then
begin

{we found it, calculate new min and max }
if adr_value > father^.max_value then
fatherA.max_value :- adr_value;

4 if adr_value < father^.min_value then
father^.min_value :- adrvalue

end
else

4 - 124-

if new-address < fatherA.err_node_adr then
begin
if father~.left = nil then

begin
new(new-node);

- -. fatherA~left :- new-..node;
with new_node^ do

begin
err_node_adr := new_address;
min-value :=adr-value;
max_value :=adr_value;
left :nil;
right :nil

end {with}
end

else
begin

father := fatherA.left;
err_tree_search(fatherinew addresspadr..value)

end
end

else
if fatherA~right = nil then

begin
new(new..node);
father"A.right :- new_node;
with new_node*s do

begin
err_node_adr :- new_addressl
mm _value :-adr_value;
max_value :=adr_value;
left :nil;
right :nil

end {with}
end

else
begin

father := father"'.right;
err-tree-search(fatherfnew.addressradr value)

end {else}
end; {errtree_search

-125-

P.1.24 Procedure build_err_tree-

P ROC E DU RE bu il1d e err t tre e

VERSION: 1.0 04-NOV-82

PURPOSE:
This procedure builds the error analysis

-. binary tree.

INPUT:
root
total-adr

OUTPUT:
none

GLOBALS USED:
raw-data-file

REMARKS:

CALLED BY:
err-reduce_data

PROCEDURES AND FUNCT IONS CALLED:
err_tree_search

procedure build-err..tree(var root :err-..ptr;
var total-adr :integer);

var
new_address : memory; {address to be inserted in tree)
adr_value : dxdata; (value written to a location)

new-.node, {pointers to nodes)
father :err-..ptr;

begin (build_err_tree)
open(raw..data-file, 'DXDATA' ,old);
(insert the first word in the root nodel
reset(raw..data-file);
if not eof(raw-.data~.file) then

* begin
read(raw datafile,new_address,adr-value);
total_adr :- 1;
with rootAk do

begin
err_nodeadr :=new_address;

-126-

min_value :- adrvalue;
max_value := adrvalue;
left : nil;
right : nil

end; (with)
end

else
root : nil;

[attach each address to its father)
while not eof(raw_data_file) do

begin
read(rawdata_file, new-addressadr value);
total_adr := total_adr + 1;
father := root; (first father is root}
{insert each path address into tree)
err_tree_search(father, newaddress, adr_value);

end; {while)
close (rawdatafile)

end; {build_err tree

- 127 -

F.1.25 Procedure read_err_tree -

PROCEDURE read _ err _ tree

VERSION: 1.0 01-DEC-82

PURPOSE:
This procedure does an in order traversal of the
binary tree.

INPUT:
root

OUTPUT:
none

GLOBALS USED:
none

REMARKS:
recursive procedure

CALLED BY:
errreduce_data

PROCEDURES AND FUNCTIONS CALLED:
read_err_tree
octal

procedure readerrtree(root : err-ptr);

begin
if root <> nil then
begin

{stoping state not reached - perform recursion)
readerr_tree(root"4.left);
write (tab);
octal(root.err_nodeadr);
write(' -> ')

* octal(root"'.min_value);
write('
octal(root".max_value);
writeln;
readerr_tree(root .right);

end {if)
end; {read-err_tree

-128-

F.1.26 Procedure error-reduce-data-

P ROC ED URE er ro0r r red u ce d data

VERSION: 1.0 27-SEP-82

PURPOSE:
This procedure reduces the error analysis data.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
raw-data-file

REMARKS:

CALLED BY:
do-error

PROCEDURES AND FUNCTIONS CALLED:

procedure error-reduce_data;

var
total-addr : integer; {number of addresses read I
root : err-..ptr; { root of tree}

begin
writein;
new(root); {create root node)
build-err..tree(root~total~addr);
if total_aadr 0> 0 then
beg in

writeln(esc,' (2J'); (clear screen}
writeln;
writeln
(tab?'ADDRESS MIN VALUE MAX VALUE');
writeln
(tab,'- - - - - - - - - - - - -
read_err_tree~root);
writein;

-129-

vrite('TOTAL NUMBER OF ADDRESSES READ ')

writein~total_addr :2)
end

else
writeln('FILE EMPTY')

end; (error...reduce_data

-130-

F.1.27 Procedure doerror -

PROCEDURE do error

VERSION: 1.0 27-SEP-82

PURPOSE:
This procedure does the error analysis.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
error_dx_file

REMARKS:
dummy module

CALLED BY:
data_analysis

PROCEDURES AND FUNCTIONS CALLED:
error-help
errorbuilddx
error-collectdata
errorreduce_data

. ** }

procedure doerror(var help_level : helpmode);

begin
error_help(helplevel);

(build the error analysis dx file)
errorbuilddx;

(call the contractor supplied data extraction routine)
.error_collect_data;

{reduce the extracted data)
error_reduce_data

end; {doerror

-131-

- .". --

P.1.28 Procedure do-trackfile-

P ROC ED UR E d o t tr ac kf 1lie

VERSION: 1.0 12-SEP-82

PURPOSE:
This procedure displays the contents of the emitter
track file.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
none

REMARKS:
Dummy module-
Code for this module from previous thesis

CALLED BY:
data..analysis

PROCEDURES AND FUNCT IONS CALLED:

procedure do_trackfile;

begin
writein;

writeln('*** not inpiemented in thesis version **)

wr iteln
end; {do...trackf ile

-132-

P.1.29 Procedure dorwr -

PROCEDURE do _ rwr

VERSION: 1.0 12-SEP-82

PURPOSE:
This procedure displays a simulation of the RWR
CRT on the color graphics terminal.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
none

REMARKS:
Dummy module -
Code for this module from previous thesis

CALLED BY:
0 data_analysis

PROCEDURES AND FUNCTIONS CALLED:

procedure do-rwr;

begin
writeln;". writeln (' *************************** i*************S)

writeln('*** not inplemented in thesis version ***');
: , writeln (' ***)

writeln
end; {dorwr

- 133 -

F.l.30 Main Executive-

THIS IS THE MAIN EXECUTIVE ROUTINE

* begin (data..analysis)
esc zachr(27); (ASCII ESCAPE}
bel :~chr(7); (BEEPI
tab ve chr(9);- (ASCII TAB}

writeln(esc,'L[2j'); (clear-screen)
writein
(tab,'*** ALR-46 DATA EXTRACTION AND ANALYSIS SYSTEM **)

writein;
writeln('Type <help> for menu'),
writein;

(initialize the transformation array)
transform~performance] :- 'PERFORMANCE '
transform[coverageJ :- 'COVERAGE
transform[errorl :='ERROR
transform~trackj : 'TRACK
transform[rwr] := RWR '
transform~quiti : 'QUIT

repeat
helplevel =min;
good..input :-false;
(loop until valid command)
while not good-..input do

begin
write ('ENTER COMMAND -> ');
getjinput (transf orm(test]);

(select mode from menu or command)
*.if transform[test] - 'HELP ' then

begin
help..user (mode,helpjlevel);
good-.input :- true

end
else

begin
4 mode :- performance;

(search the transformation array for a match)
while transform~model 0> transformitest] do
mode :- succ(mode);

(check for invalid input)
if mode - test then

.4 writeln (bell'INVALID COMMAND... try again')
else
goodinput :-true

end (else)

A -134-

end; (while}

Icommand has been converted into an enumeration type}
case mode of

performance : do...performance (help-eve.);
coverage :do_coverage(helpjlevel);
error : do...error(helplevel);
track : do...trackf ile;
rwr : do..rwr;
quit : stop-..command :-true

end; {case)
until stop-command

end. (analysis

-135-

APPENDIX G

TEST DOCUMENTATION

This appendix contains the test plans used in

validating the proper operation of the Data Extraction and

Analysis System. Test cases were derived from the software

requirements using equivalence partitioning and boundary

value analysis.

CONTENTS

1. Test Plans 137

2.* Test Data 140

-136-

G.l T1PLANS

TEST INPUT EXPECTED OUTPUT
CASE

01 Command PERFORMANCE Enter performance
analysis mode

02 Command COVERAGE Enter coverage
analysis mode

03 Command ERROR Enter error
analysis mode

04 Command TRACK Enter trackfile
analysis mode

05 Command RWR Enter RWR
analysis mode

03 06 Command HELP Print menu

07 Command QUIT Exit to operating
system

08 Command INVALID Print error message

09 Menu selection #1 Enter performance
analysis mode

10 Menu selection #2 Enter coverage
analysis mode

11 Menu selection #3 Enter error
analysis mode

12 Menu selection #4 Enter trackfile
analysis mode

- 137 -

TEST INPUT EXPECTED OUTPUT
CASE

13 Menu selection #5 Enter RWR
analysis mode

14 Menu selection #6 Exit to operating
system

-------------------------------------- --------------------------

15 Menu selection #7 Print error message

Performance mode: 'DXFILE.DAT' contains
16 Entry address = l..32767 right justified 5 char

Exit address = l..32767 entry and exit addresses

Performance mode:

17 Entry address > 32767 Print error message

--------------------------------------- ------------------------
Performance mode:

18 Exit address > 32767 Print error message

--------------------------------------- ------------------------
Performance mode: Execute data collection

19 terminate input Print module name and
execution times

------------------------------------ --------------------------
Performance mode:

20 Empty data file Print module name with
no execution times

-------------------------------------- --------------------------
Coverage mode: 'DXFILE.DAT' contains

21 Path address l..32767 right justified 5 char
path address

------------ --
Coverage mode:

22 Path address > 32767 Print error message

------------ -------------------------- -- -----------------------
Coverage mode: Execute data collection

23 Path address = 0 Print path address and
times executed

----------------------------------- --------------------------
Coverage mode:

24 Empty data file No data printed

-138-

TEST INPUT EXPECTED OUTPUT
CASE

Error mode: 'DXFILE.DAT' contains
25 Variable address- right justified 5 digit

l..32767 text of addresses

Error mode:
26 Variable address > Print error message

32767

Error mode: Execute data collection
27 variable address = 0 Print variable addresses

with min and max values

Error mode:
28 Empty data file No data printed

13

-o3

G.2.1 Performance Analsis- This section contains the test

*data used to validate the Operformance analysis" mode of the

. Data Extraction and Analysis System.

G.2.1.1 Injaut DA&A -

Subroutine Name - TESTI

Entry Address - 1

Exit Address - 77777

Subroutine Name - TEST2

Entry Address - 400

Exit Address - 1000

Subroutine Name - TEST3

Entry Address - 2000

Exit Address - 4000

G.2.1.2 DAtA Redcion simulai at - The following data

is data used to simulate the operation of the data

extraction subsystem. This data is in the internal decimal

representation used by the DEAS. The format of the data is

described in Appendix B.

-1

32767
0

- 140 -

10
-1

256
0

20
-1

512
0

30
-1

1024
0

40
-1

2048
0

50
-1

1
0

60
-1

256
0

70
-1

10240
80
-1

2048
0

90
-1

512
0

100
-1

32767
0

110
-1

1024
0

4" 120
-1

2048
0

130
-1

256
0

140
-1

- 141 -

." ' . • • °° ° o- -. °- . . o ° . - ' . -- .. .

512
0

150
-1

0
160

-1
32767

0
170

G.2.1.3 Djjil Produced - The following is the data

extraction specification file to be used by the data

extraction subsystem. The file is a text file and is

verified by visual comparison with the input data.

1
77777

400
1000
2000
4000

0

G.2.1.4 Console O- The following is the display

generated by the DEAS when supplied with the previously

described data.

EXECUTION TIMES FOR SUBROUTINE TEST1

10 50 10
--

EXECUTION TIMES FOR SUBROUTINE TEST2
--
10 30 10

EXECUTION TIMES FOR SUBROUTINE TEST3

10 10 10

- 142 -

' + ,% '. .- " -.- + , - . - , ,, - " , . , ., -. - * .-...,... .

G.2.2 C Analis- This section contains the test

data used to validate the "coverage analysis" mode of the

Data Extraction and Analysis System.

- G.2.2.1 Input DAtA -

PATH MARKER #1 1

PATH MARKER #2 400

PATH MARKER #3 1000

PATH MARKER #4 2000

PATH MARKER #5 4000

PATH MARKER #6 77777

G.2.2.2 Data Reduction simulation Data - The same

simulation file used for the Operformance analysis" mode was

used for -this mode.

G.2.2.3 Dxfile Produced - The following is the data

extraction specification file to be used by the data

extraction subsystem. The file is a text file and is

verified by visual comparison with the input data.

1
400

1000
2000
4000

77777
0

- 143 -

G.2,2.4 Cosl -uq41 The following is the display

generated by the DEAS when supplied with the previously

described data.

ADDRESS NUMBER OP TRAVERSALS
--------------- --------------------

1 -> 3
*400 => 3
* 1000 =>3

2000 ->3
*4000 => 3

77777 ->3

TOTAL NUMBER OP PATHS COVERED =18

G.2.3 Ero Analysis~ This 6-ction contains the test data

used to validate the "error analysis' mode of the Data

Extraction and Analysis System.

G,2,3.1 In~iit. Data-
VARIABLE ADDRESS #1 66

VARIABLE ADDRESS #2 504

VARIABLE ADDRESS #3 1733

VARIABLE ADDRESS #4 3720

VARIABLE ADDRESS #5 1

VARIABLE ADDRESS #6 77777

VARIABLE ADDRESS #7 13055

-144-

. . .J

',I. G.2.3.2 Data Redcti n SimUlati. n Data - The following data

is data used to simulate the operation of the data

extraction subsystem. This data is in the internal decimal

* !representation used by the DEAS. The format of the data is

described in Appendix B.

1
0

456
1

32767
32767
32767
5677
3455
987

6546
54

786
324

4000
2000

400
987
20

5677
0
54

32767

G.2.3.3 Dxfile Produe - The following is the data

extraction specification file to be used by the data

extraction subsystem. The file is a text file and is

verified by visual comparison with the input data.

0
- 66, 66

504, 504
* 1733, 1733

3720, 3720
I, 1

77777,77777

*l - 145-

.......

13 055,13055

G.2.3.4 Cnsole Out~put The following is the display

generated by the flEAS when supplied with the previously

described data.

ADDRESS MIN VALUE MAX VALUE

1 a>077777

66 =>1422 77777
504 =>7640 7640

1733 ->24 14622
3720 => 620 620

13055 ->0 6577
77777 a> 77777 77777

TOTAL NUMBER OF ADDRESSES READ -12

-146-

VITA

Mr. Joel R. Robertson was born on January 24, 1952,

in Huntsville, Alabama. In 1969, he graduated from John

Marshall High School in Glendale, West Virginia. He

attended West Liberty State College from which he received

an Associate of Science degree in Electronics Technology in

1971. He then attended West Virginia University from which

he received a Bachelor of Science degree in Electrical

Engineering in 1975. Following graduation, he accepted a

position with the Federal Aviation Administration in

Atlanta, Georgia. He was employed with the FAA as an

electrical engineer installing radar systems until 1979 when

he accepted employment with the Electronic Warfare Division

of the United States Air Force at Robins AFB, Warner Robins,

Georgia, as a civilian electronic engineer working in the

* Radar Warning Receiver Section. He entered the Air Force

Institute of Technology at Wright Patterson AFB, Ohio in

June 1981.

Permanent Address: 32 Seminole Road

Brunswick, Georgia 31520

I

- 4

FIL134D

